
ci t Oo

Kell L.Sie

APPINGA OBJEC-ORENTE9D RQUREEN

SUPPRT DESIGN AN COPNNAES

DEARMET THEI OC

CtAI, USAIFf

OURFOEPARSTMETUFTE AIR TORCNLG

Wright-Patterson Air Force Base, Ohio

,113 166

AFIT/GCS/ENG/90D-13

DTI9
JI\A 0 7 191I'U

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN ARCHITECTURE THAT
SUPPORTS DESIGN AND COMPONENT REUSE

THESIS

Kelly L. Spicer
Captain, USAF

AFIT/GCS/ENG/90D-13

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-13

MAPPING AN OBJECT-ORIENTED REQUIREMENTS

ANALYSIS TO A DESIGN

ARCHITECTURE THAT SUPPORTS DESIGN AND

COMPONENT REUSE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University Acce ,n For

In Partial Fulfillment of the D , 1-

Requirements for the Degree of

Master of Science in Computer Science

Kelly L. Spicer, B.S., B.S. "

Captain, USAF.

AI
December, 1990

Approved for public release; distribution unlimited

Acknowledgments

This thesis would not have been possible without the patience, sacrifice, and

encouragement of my wife, Sally Jo. My deepest thanks go to her.

I also thank my God for giving me time off from his work to work on this

thesis.

Important thanks also goes to the "AFIT facility; especially my thesis advisor,

Maj David Umphress for his guidance during my research; and my committee mem-

bers, Maj James Howatt and Maj Patricia Lawlis for their helpful suggestions and

critiques.

Important thanks also go to my mother, Laura Spicer, who took the time to

make editorial comments and suggestions.

I also thank the Air Force Office of Scientific Research for sponsoring this

thesis.

Finally, thanks go to my classmate Paul Hardy. His friendship and encourage-

ment were invaluable to me during our thesis research time.

Kelly L. Spicer

Table of Contents

Page

Acknowledgments i

Table of Contents ii

List of Figures x

List of Tables xii

Abstract xiii

I. Introduction 1-1

1.1 Background-Problems with Current Reuse Approaches 1-1

1.1.1 Too Much Emphasis On Reuse in the Small. 1-1

1.1.2 Current Methods Do Not Support Reuse .. . 1-2

1.2 Problem Definition 1-3

1.3 Scope 1-4

1.4 Approach and Overview 1-4

1.5 Maximum Expected Gain 1-4

1.6 Sequence of Presentation 1-5

II. Literature Survey 2-1

2.1 Introduction 2-1

2.2 Definition of a Reusable Architecture 2-1

2.3 Characteristics and Benefits of Reusable Architectures 2-2

2.4 Domain Analysis 2-3

2.5 Categories of Architecture Structures 2-5

Ii'

Page

2.6 Survey of Existing Reusable Architectures 2-7

2.6.1 SEI's "Struictural Model" Solutions Overview. 2-7

2.6.2 SEI's OOD-Paradigm for Flight Simulators. 2-9

2.6.3 Granite Sentry Command and Control System. 2-9

2.6.4 RAPID 2-10

2.6.5 University of Texas DBMS 2-12

2.6.6 Kiem's Keystone Methodology 2-12

2.7 Characteristics Needed to Support Component Reuse . 2-16

2.7.1 Object Oriented 2-16

2.7.2 Explicitly Defined Purpose/Function 2-17

2.7.3 Independent Objects 2-17

2.7.4 Layered Architecture 2-18

2.7.5 Standard Interfaces 2-18

2.8 Object-Oriented Requirements Analysis 2-19

2.9 Conclusion 2-25

III. A Method of Mapping from an OORA to a Design That Supports

Reuse 3-1

3.1 Introduction 3-1

3.2 Overview of the Products of March's Analysis Method 3-1

3.2.1 Step-One Products 3-2

3.2.2 Step-Two Products 3-2

3.3 Description of the OOD-Paradigm Architecture 3-4

3.3.1 Structure Overview 3-5

3.3.2 The System Abstraction 3-8

3.3.3 Templates For Recreating Architecture Parts. 3-13

3.4 Summary of Advantages and Characteristics of the OOD-

Paradigm Architecture 3-16

iv

Page

3.4.1 Supports Design Reuse 3-16

3.4.2 Supports Component Reuse 3-17

3.4.3 Easier Development Process 3-17

3.4.4 More Efficient Implementation 3-18

3.5 A Mapping Method from an OORA Method to a Design

Following OOD-Paradigm Principles 3-19

3.5.1 Background and Goals of the Mapping Method. 3-19

3.5.2 Overview of the Mapping Method 3-20

3.5.3 Map All Objects Using an Object-Mapping Ta-

ble 3-21

3.5.4 Structural Representation: Organize the Objects

into the Hierarchical-Structure Diagram ... 3-23

3.5.5 Procedural Representation: Connect Objects with

Events Using the Event-Mapping List and Object-

Event Interconnection Diagram 3-25

3.5.6 Mapping to Ada Specifications 3-30

3.5.7 Develop Templates for Instantiating Object Man-

agers 3-33

3.5.8 Develop the Standard-Engineering-Types pack-

age for Instantiating the Design 3-36

3.5.9 Cross Check Transformations as a Tracing Step. 3-36

IV. Validation of the Mapping Method 4-1

4.1 Introduction 4-1

4.2 The Elevator Problem 4-1

4.2.1 Important Products from March's Analysis. 4-1

4.2.2 Elevator Object-Mapping Table 4-6

4.2.3 Elevator Hierarchical-Structure Diagram. . .. 4-6

4.2.4 Elevator Event-Mapping List 4-9

V

Page

4.2.5 Elevator Object-Event Interconnection Diagram. 4-13

4.2.6 Mapping to Ada Specifications 4-15

4.3 The Cruise Control Problem 4-15

4.3.1 Important Products from March's Analysis. 4-16

4.3.2 Completion of Cruise Control Hardware Inter-

face Requirements 4-19

4.3.3 Cruise Control Object-Mapping Table..... 4-21

4.3.4 Cruise Control Hierarchical-Structure Diagram. 4-23

4.3.5 Cruise Control Event-Mapping List 4-23

4.3.6 Cruise Control Object-Event Interconnection Di-

agram 4-29

4.3.7 Mapping to Ada Specifications 4-31

4.4 Analysis 4-31

4.5 Suggestions for Design Implementation 4-32

4.6 Simulation Implementation of the Elevator Design . . . 4-32

V. Conclusions and Recommendations 5-1

5.1 Summary of Contribution 5-1

5.1.1 Identification of Design Reuse Importance, Ben-

efits, and Characteristics 5-1

5.1.2 A Mapping Method for Consistent, Reusable De-

signs 5-1

5.1.3 A Method of Design Representation 5-2

5.1.4 Designs That Are Quick to Implement 5-2

5.2 Related Further Research 5-3

5.2.1 Application to Larger Systems 5-3

5.2.2 Timing and Sizing Studies 5-4

5.2.3 Categorizing Reusable Designs by Application

)omains 5-5

vi

Page

5.3 Suggestions For March's Analysis Method 5-6

5.3.1 Make Requirements Tracing Easier. 5-6

5.3.2 Other Possible Uses. 5-7

5.4 Closing Remarks. 5-7

Appendix A. Ada Specifications for the Elevator Problem A-1

A. 1 StandardiEngineering-Types. A-i

A.2 Object Manager-Template. A-6

A.3 Object-Managers A-9

A.3.1 Floor -anel-Manager A-9

A.3.2 WVeight Sensorivlanager. A-13

A.3.3 Scheduler.-Manager A-i15

A .3.4 Lo cati1on -anel-M anager A-19

A.3.5 Control-Panel-M an ager. A-22

A.3.6 Floor-Sensor-vlanager A-25

A.3.7 Motor-Manager. A-28

A.4 System-Aggregate Packages. A-31

A.4.1 Elevator-System-Aggregate A-31

A.4.2 Scheduler-System-Aggregate. A-32

A.4.3 Floor-Panel-Aggregate A-32

A.5 Connector/Event Procedures A-33

A.5.1 Summons A-33

A.5.2 Arrives A-33

A.5.3 Proceed.. A-34

A. 5.4 Dest n ationi-Requested A-35

A. 5.5 Floor-Approaching. A-36

vi'

Page
Appendix B. Ada Specifications for the Cruise Control Problem . B-i

B.1 Stan dard-Engineering-Types. B-I

B.2 Cruise Control Object-Managers B-4

B.2.1 Throttle -ontrol-Manager B-4

B.2.2 Speed...Sensor-Manager B-8

B.2.3 Buttons-.Manager. B-10

B.2.4 System-States-Manager. B-14

B.2.5 Timer-Alanager B-18

B-3 Cruise-Control Aggregate Package B-20

B.3.1 Cruise-Control-S-,stem-Aggregate B-20

B.4 Connector/Event Procedures. B-21

B.4.1 Turn-On B-21

B.4.2 Set-Speed. B-21

B.4.3 Update B-22

B.4.4 Brake B-24

13.4.5 Resume. B-24

B.4.6 Accelerate.. 1-24

B.4.7 Turn-Off B-25

Appendix C. Ada Package Bodies for Simulation Implementation of the
Elevator Problem C-i

C.1I Floor -anel-Manager C-i

C.2 Weight Sensor-Mailager C-4

C.3 Scheduler-Manager C-4

CA4 Location -anel-Manager. C-i15

C.5 Control-Pan el-Man ager C- 16

C.6 Floor..SensorJ-Ianager C_18

C. 7 Motor-Manager C-19

Vill

Page

Bibliography BIB-i

Vita. VITA-i

ix

List of Figures

Figure Page

2.1. Composition Hierarchy 2-6

2.2. Seniority Hierarchy 2-8

2.3. Granite Sentry Model Solution Architecture 2-11

2.4. RAPID Hierarchy 2-13

2.5. Example of an Entity-Relationship Model 2-14

2.6. The Keystone Packaging Schema for the Previous Figure 2-15

2.7. Concept Map of "Concept Maps" 2-22

2.8. Static Relationship Diagram for "List" Object 2-23

2.9. Dynamic Relationship - State Diagram for "List" Object 2-24

3.1. SEI Overall Software Architecture 3-6

3.2. Executive-Le-;el Connection-Spark Conversion Routine 3-7

3.3. SEI System-Level Architecture 3-8

3.4. SEI Executive Level Architecture 3-9

3.5. Connection Manager Software Architecture 3-10

3.6. Turbofan Engine Description 3-11

3.7. Turbofan Engine Object Diagram 3-12

3.8. Object Manager Template Example 3-14

3.9. burner Object Manager Package Specification 3-15

3.10. Hlierarchical-Structure Diagram 3-24

3.11. Object-Event Interconnection Diagram 3-29

4.1. Elevator Hierarchical-Structure Diagram 4-8

4.2. Elevator Object-Even. Interconnection Diagram 4-14

4.3. Cruise Control Hierarchical-Structure Diagram 4-24

x

Figure Page

4.4. Cruise Control Object-Event Interconnection Diagram 4-30

x)

List of Tables

Table Page

3.1. Object-Mapping Table 3-22

4.1. Elevator Object-Mapping Table 4-7

4.2. Cruise Control Object-Mapping Table 4-22

xii

AFIT/GCS/ENG/90D-13

Abstract

Design reuse has more potential for increasing the productivity of software

development and maintenance than do traditional approaches to software reuse that

emphasize reuse of smaller components. Current software development methods do

not promote design reuse.

The literature contains limited documented research on the subject, but enough

that some design reuse principles can be gleaned. Among these principles are that

reusable designs should be applicable within some domain of application, have a

consistent structure, provide a method for instantiating the design, avoid object

nesting, and promote reuse of smaller components as well.

A design mapping method from an object-oriented requirements analysis to

a design that follows the principles of design reuse is presented.' The mapping

method involves two transformation steps and introduces four representation tools

for conducting the transformations. These tools are the Object-Mapping Table; the

Hierarchical-Structure Diagram, which represents the static structure of the design;

the Event-Mapping List; and the Object-Event Interconnection Diagram, a graphical

representation of the Event-Mapping list to show the design dynamics. The second

step transforms these representations into Ada specifications. Design templates are

developed to aid in this transformation.

The design method is applied to two problems to demonstrate the consistent

designs it produces. The first problem is then carried through to completion to

demonstrate its feasibility and ease of implementation.

X111

MAPPING AN OBJECT-ORIENTED REQUIREMENTS

ANALYSIS TO A DESIGN

ARCHITECTURE THAT SUPPORTS DESIGN AND

COMPONENT REUSE

I. Introduction

Software reuse is a much touted solution to the software crisis. But is it work-

ing? Are we using the right methods in our quest for increased productivity through

reuse? Are we approaching this problem from the right level? This thesis addresses

these questions, suggests some answers, and presents a method for achieving greater

reuse potential and benefits through design reuse.

1.1 Background-Problems with Current Reuse Approaches

A common complaint by the computer community is : "Current approaches to

software reuse have not lived up to reusability's potential to dramatically improve

software productivity and maintainability" [Kaiser and Garlan, 198 7 :ppl7]. There

are many reasons software reuse is not more common; they fall into a number of

categories: technical, managerial, contracting, etc. The concentration in this thesis

will be on technical impediments. In particular, it focuses on the problem of a

general emphasis on reuse at the "small" level and that common software design

methodologies do not support reuse.

1.1.1 Too Much Emphasis On Reuse in the Small. Biggerstaff and

Richter pointed out that reuse of larger software components leads to larger reuse

payoffs [Biggeistaff and Richter, 1987:pp42]. Tracz's paper concludes that "most

programmers tend to view reusability from the perspective of simply reusing code

1-1

when reusing other programming artifacts (designs, specifications, and tests) leads

to a more productive [development] environment" [Tracz, 1986 :ppl 7 5].

Biggerstaff and Richter contrasted the differences in code reuse versus design

reuse in their paper on reusability directions. They pointed out that the payoff for

reuse of software modules quickly reaches a ceiling that is difficult to surpass. Design

ideas are often much more reusable than software modules. They complained that

no method exists for representing designs, unlike code, which is represented in high-

order programming languages. They suggested that design reuse is the only way we

can come close to an order-of-magnitude increase in productivity or quality. They

listed as "Research Issues" properties that design representations need to exhibit.

Among these are what they called "partial specifications." These are "partial archi-

tectes" or "partial structures" which they say are "highly reusable, but the details

of these typically are not." They must be filled in by the particular implementation.

They concluded by saying that "Design Reuse has the greatest potential leverage [to

increase payoffs in reuse], but significant representational breakthroughs are needed

to realize its full potential." [Biggerstaff and Richter, 198 7 :pp42-48]

1.1.2 Current Methods Do Not Support Reuse. Tracz pointed out

that one of the reasons programmers do not reuse code is that "there are no software

development methodologies that stress reusing code, let alone reusing a design, or

a specification" [Tracz, 1986:pp172]. The Command and Control Systems Office

(CCSO) also reported the lack of a standard design methodology that supports

reuse [CCSO, 1988:ppl5].

Proponents of Object-Oriented Design (OOD) claimed it to be the methodol-

ogy able to make reuse practical [Meyer, 1987:pp5 3]. The principle of OOD is that a

system's modular decomposition is based on objects from the problem and solution

space, rather than on the functions performed. This allows modules (objects) to

be classified and grouped into classes for the purposes of reuse [Kaiser and Garlan,

1-2

1987:pp55-63]. OOD is based on good principles and works well for programming in

the small. For example data structures, device controllers, devices simulators, etc.,

can be defined and grouped in a fairly natural way [Booch, 1987:pp45-112].

Apparently, the dilemma is a general lack of a method for applying OOD for

larger systems development. Probably the most commonly referenced method for

applying OOD is Booch's method of "Developing an Informal Strategy," and then

"Formalizing the Strategy" [Booch, 1983:pp38-44,71-79,130-143]. Booch credited

Abbott with the idea. The method relies on using natural-language descriptions

as a first step toward designing systems. The problem with the strategy, in terms

of large scale reuse, is that it will create unique solutions for each problem. Just

as different individuals will describe problems and solutions differently, so will the

solutions based on these narrative statements be different. The resulting solution is

designed for a particular problem, not a class of problems. A similar analysis could

be made for other commonly used development methodologies.

Reuse in the large is needed to achieve large gains in software development

productivity [Biggerstaff and Richter, 198 7 :pp46-48] [Tracz, 1986:pp175]. A method

of designing software that solves classes of problems is needed to achieve these gains.

Such a method would systematically develop similar solutions for similar problems.

1.2 Problem Definition

The objective of this thesis is to develop a method to map from object-oriented

requirements definitions to designs that exhibit principles consistent with design

reuse. This mapping method includes tools for design representation that demon-

strate consistency with these principles, are systematic, and create similar designs

for all problems within the application domain. Specific objectives of this thesis are

the following:

a. Determine the principles on which design reuse should be based.

1-3

b. Define design representation tools needed to represent designs consistent with

the above principles.

c. Define steps, using these principles and tools, for developing consistent designs

with potential for reuse.

d. Validate the mapping method by applying it to two problems and comparing

the results.

1.3 Scope

This thesis discusses problems and solutions for classes of problems mostly

within the scope of embedded-Ada applications (for which Ada was initially devel-

oped). The principles discussed, however, certainly apply to a much broader range.

This scope excludes discussion of approaches to solving classes of problems used by

4th generation languages and code generators.

1.4 Approach and Overview

This research consists of five phases:

1. An investigation into current methods of design reuse under research.

2. A case study of a particular design-reuse approach to glean the principles used.

3. The definition of a mapping method from an object-oriented requirements def-

inition to designs that exhibit these principles.

4. First validation step - apply the mapping method to two problems and compare

results.

5. Second validation step - implement one of the resulting designs to demonstrate

its usability.

1.5 Maximum Expected Gain

The maximum expected gain from this research is as follows:

1-4

* An awareness of the importance and potential of reusing at the design level.

" An awareness of some of the research being done in the area of design reuse.

" An appreciation of the importance of consistent designs, at least within an

application domain. This is a first step to design reuse.

" A useful mapping method from an object-oriented requirements definition to

designs that are consistent, for embedded event-response applications.

" Further direction in this area through suggestions of follow-on research.

1.6 Sequence of Presentation

The remaining chapters of this thesis follow the phases of research discussed

in Section 1.4, Approach and Overview, as described below.

Chapter II lays the foundation of the thesis by reviewing the current literature

on design reuse and object-oriented requirements analysis. The chapter starts by

discussing design reuse terminology, characteristics and benefits of reusable designs,

and how domains for reusable designs are defined. Design structures are then catego-

rized to provide context for further design discussions. Existing research and projects

that emphasize reuse of designs are then presented and discussed. Next comes an

enumeration and discussion of the ways reusable designs can also support smaller-

component reuse. Object-oriented requirements analysis (OORA) is then presented

and contrasted with other forms of requirements analysis. OORA concepts and tools

are then presented and discussed.

Chapter III develops the method of mapping from an OORA to design. The

foundation for the mapping method is first further developed with detailed descrip-

tions of March's OORA method and the OOI Paradigm design method. Benefits

and advantages of using an OOD-Paradigm-like reusable design are then listed and

described. The mapping method itself is then described. It maps from March's

method to a design following OOD-Paradigm principles. Both major steps of the

'-5

mapping method are described in order: first a mapping from the analysis to design

representation tools developed in this thesis, then a mapping from these representa-

tions to Ada specifications.

Chapter IV validates the design mapping method by applying it to two different

problems. The primary objective is to demonstrate how the method develops similar

designs for different problems. This chapter applies the first step of the mapping

method to the two problems; the second step, mapping the results of the first step

to Ada specifications, is included as appendices A and B. The design results are

discussed in an analysis section that compares the results to the list of benefits and

advantages of reusable designs developed in Chapter III. Suggestions are then made

for the implementur of the designs. As an additional validation step, one of the

designs is implemented and the results are discussed; the implementation code is

included as appendix C.

Chapter V Summarizes the contribution of this thesis, suggests and discusses

follow-on research that needs to be done, and makes some hindsight comments on

the use of object-oriented requirements analysis.

1 -6

II. Literature Survey

2.1 Introduction

This chapter lays a foundation for the idea of designing to solve classes of

software problems instead of individual problems by reviewing the literature on this

and related topics. Terminology is a problem: what do you call a design solution

intended to solve more than one problem in an application domain? Many authors

call them "reusable architectures" so this term will be adopted for this chapter.

Because the term design is more widely understood than architecture when describing

software, later chapters use the term reusable design instead.

Some definitions of reusable designs, as presented in the literature, are the

lead topic of the chapter. Domain analysis is then briefly discussed since it deals

with analyzing classes of problems instead of individual problems. Design structures

are categorized to provide context for discussing different kinds of reusable designs.

Some actual reusable designs and designs that apply reusable design principles are

then presented. Because component reuse is thought to be an important side ben-

efit of reusable designs, characteristics of a design that would support component

reuse are discussed. Object-oriented requirements analysis is then discussed to lay a

foundation for the mapping method presented in Chapter Il.

2.2 Definition of a Reusable Architecture

Parnas discussed the idea of reusable architectures in his 1976 paper on pro-

gram families. His context was multiple release software systems where significant

differences exist from one release to another. He said that multiple releases are gen-

erally conducted by first making one complete and working release, then following

releases are made by modifying the first release. Ile proposed the idea of forming a

baseline at some stage of partial design. This is the point where all releases share a

2-1

common design but will now diverge to satisfy their differing requirements. Having

a baseline point of partial design is a similar idea to that of reusable architectures.

The common partial design is reused for each different release. [Parnas, 1976:ppl-3]

No formal definition of a reusable software architecture can be found in a

dictionary or textbook. It is an approach to software building called by different

names by different people. For instance, Brown and Quanrud called then "Generic

Architectures" [Brown and Quanrud, 1988:pp390], Richard D'Ippolito called them

"Models" [D'Ippolito, 1989:pp256] but his research team (the Software Architectures

Engineering Project (SAE) at the Software Engineering Institute (SEI)) used to

call them "Paradigms" [Rissman and others, 1988:ppl]. D'Ippolito explains in his

paper that they changed their terminology from "paradigm" to "model" and more

recently to "structural models." Ted Ruegsegger called them "generic functional

architectures" [Ruegsegger, 1988:pp16]. Batory, Barnett, Roy, Twichell, and Garza

called them generic architectures and defined them as follows: "An architecture is

a template in which building-blocks can be plugged. Interfaces are standardized to

make blocks interchangeable" [Batory and others, 1988:ppl].

2.3 Characteristics and Benefits of Reusable Architectures

Based on the literature cited later in this chapter, reusable architectures can

be characterized as follows:

1. Applicable within a problem/application domain.

2. Has a consistent structure.

3. Provides a general solution to a class of problems.

4. Provides a method for instantiating specific solutions.

5. Designed to promote reuse of components.

A reusable architecture is a template for solving problems within an application

dornain. A reusable architecture includes a design structure as a minimum. It

2-2

may also include a set of templates for instantiating the design as in the SEI's

OOD-Paradigm [Rissman and others, 1988:pp53], or a set of reusable subcomponents

applicable within the domain and designed to be used in the architecture as with

the RAPID architecture [Brown and Quanrud, 19 88 :pp 3 90].

Richard D'Ippolito, of the SEI's SAE project, who called reusable architectures

"Models," defined them as follows:

Models are general solutions to problems and provide reuse at the de-
sign level because they are expressed in a reusable, adaptable form. The
adaptability is provided by parameterizing the services so that they may
be scaled to fit a particular application of the model. This requires the
model to present to the designer a clear sense of the general problem the
model solves and to present to the implementor the means to create an in-
stance of the model that solves the specific problem. In theory, the model
represents captured science, and the parameterization is what allows the
engineer to apply the science to a specific problem. A good model will
be capable of being applied to the expected range of applications with
no change to its working structure and with predictable performance.
[D'Ippolito, 1989:pp258]

D'Ippolito also quoted Baber as saying the following:

Especially noteworthy is that the engineer employs a scientific, theoret-
ical foundation to verify - by systematic calculation before the object
is actually built - that a proposed design will satisfy the specifications.
[D'Ippolito, 1989:pp257]

D'Ippolito was saying that a model solution is the tool the software developer

needs to accomplish this - he would then be functioning as an "Engineer."

2.4 Domain Analysis

The source of information needed to create a standard architecture is certainly

some type of domain analysis. Like reusable software architectures, domain analysis

2-3

has a variety of interpretations. Berard said the reason for conducting an analysis

is to identify reusable items within the domain, that is, items which may be reused

to build multiple applications within the domain. He defined "domain" in domain

analysis to mean "application domain," for example, graphical user interfaces, em-

bedded missile applications, decision support systems, etc. [Berard, 1990a:pp4I.

Prieto-Diaz made the following statement on the goal of domain analysis:

... we try to generalize all systems in an application domain by means
of a domain model that transcends specific applications. Domain analy-
sis is thus at a higher level of abstraction than systems analysis. In
domain analysis, ccnmon characteristics from similar systems are gen-
eralized, objects and operations common to all systems within the same
domain are identified, and a model is defined to describe their relation-
ships. [Prieto-Diaz, 198 7 :pp347]

Brown and Quanrud stated that a domain analysis is conducted to establish

the scope of the domain. "It [the domain analysis] should identify the require-

ments that are common to the applications of the domain..." [Brown and Quanrud,

1988:pp391].

In terms of what should be included in a domain analysis, Brown and Quanrud

also stated the following:

The domain analysis must also include the development of the prelimi-
nary design for the architecture. The design must be specified to some
level of detail in order to know whether it can be shared by all of the
applications within the scope of the domain. Applications that. cannot
share a common design cannot be included in the same domain. Thus,
the design plays a critical role in determining the scope of the domain
itself. [Brown and Quanrud, 1988:pp391]

Thus, the expected products of domain analysis vary depending on the writer.

Brown and Quanrud were looking for a high-level design; Prieto-Diaz was looking for

2-4

reusable library components, domain standards, and reuse guidelines. Prieto-Diaz

conceded that no methodology or formalization is currently available for the domain

analysis process or products, and that most current interest is on the products more

than on the process of obtaining them [Prieto-Diaz, 1987:pp347].

2.5 Categories of Architecture Structures

Most design hierarchies represent some type of layered architecture. The dif-

ference between types is in how the layers are abstracted. We will see that the layers

may be viewed as successive "virtual machine" layers (the seniority hierarchy), or

successive decompositions of, or compositions to, a high-level context diagram (the

composition hierarchy).

For object-oriented systems, Seidewitz referenced Rajlich in defining two or-

thogonal hierarchies: the composition hierarchy and the seniority hierarchy. Seide-

witz pointed out: "The composition hierarchy deals with the composition of larger

objects from smaller component objects. The seniority hierarchy deals with the

organization of a set of objects into 'layers.' Each layer defines a virtual machine

that provides services to senior layers [Seidewitz, 1989:pp97]." Rajlich said a com-

mon misconception is to equate these two hierarchies. Rajlich actually called the

composition hierarchy the "parent-child hierarchy," since he was looking at. them

from a top-down perspective. He said that this hierarchy deals with the decompo-

sition of larger packages into smaller packages. [Seidewitz, 1989:pp97-102] [Rajlich,

1985:pp 7 19]

Sidewitz pointed out that the composition (parent-child) hierarchy can be di-

rectly expressed by leveling diagrams (much like with data-flow diagrams as Press-

man explained the principle originated by Yourdon, Constantine, Riggs, Gane, and

Demarco [Pressman, 1987:pp166-172]). The top level is like a context diagram in the

sense that it can show an entire system interacting with external objects. Succes-

sive diagranis are then produced decomposing the components into children at each

2-5

COMPONENTS

'Figure 2.1. Composition Hierarchy
[Seidewitz, 1989:pp98]

level (Figure 2.1). Finally, at the lowest level, objects are -impletely decomposed

into primitive objects such as small subprograms and state/data stores. [Seidewitz,

1989:pp97-98]

Conceptually the composition architecture is a tree. In another paper, Ra-

jlich called the composition hierarchy a "system tree" [Rajlich, 198 4:pp19 2]. The

seniority hierarchy is not necessarily a tree; it can be expressed by a single diagram

with the different virtual layers separated by horizontal lines (Figure 2.2). Using

the convention of Rajlich, senior layers call junior layers, but not vice-versa (Ada's

exception propagation is an exception to this rule) [Rajlich, 1985:pp7191. In Ada

2-6

senior layers "with" junior layers. Senior layers treat the junior layers as a set of

primitive operations in an extended language. Each junior (virtual) layer is designed

using the principles of abstraction and information hiding. That this architecture

need not be a tree is seen by recognizing that two modules in a senior layer can call

the same operation in a junior layer.

An advantage of the seniority hierarchy is the reduced coupling it encourages

between layers. Junior layers know nothing about the senior layers calling them, and

senior layers do not need to know how junior layers accomplish their work, they see

only their interfaces.

Designs resulting from a Structured Analysis and Design Technique (SADT)

approach generally would be a composition hierarchy. The concept of top-down

leveling used by SADT results in the parent-child structure.

2.6 Survey of Existing Reusable Architectures

2.6.1 SEI's "Structural Model" Solutions Overview. Much work in

the area of standard architectures has been done by the the SEI's SAE Project led by

Richard D'Ippolito. Their foundational effort appears to be their 1988 Report: "An

OOD Paradigm for Flight Simulators, 2nd Edition," [Rissman and others, 1988:ppl-

120]. It described the design for a reusable architecture for the flight simulator

domain, and applied it to the engine "system" of a flight simulator. They have

also released a follow-on report that applied the architecture to the electrical system

of a flight simulator at the "system" level of the architecture [Rissman and others,

1989a:ppl-1661.

The flight-simulator architecture has also been applied to the Millimeter-Wave

Seeker Missile Under the Ada Shadow program by Hercules Defense Electronics,

[D'Ippolito, 1989:pp261,264]. The SAE project team has also helped Space Com-

mnand develop a "structural model solution" (See Section 2.6.3).

2-7

VIRTUAL
-~MACHINE

INTERFACE 1

VIRTUAL
MACHINE
INTERFACE 2

Figure 2.2. Seniority Hierarchy
[Seidewitz, 1989:pp99]

2-8

2.6.2 SEI's OOD-Paradigm for Flight Simulators. The OOD-Paradigm

report presented a unique architecture. This architecture has characteristics of both

the composition hierarchy and the seniority hierarchy, with some unique character-

istics of its own. It is similar to the composition hierarchy in the sense that each

of the major software units ("executives") is decomposed through two sublevels. It

resembles the seniority hierarchy in the sense that all the decompositions follow a

parallel layering pattern (Figure 3.1). In the implementation the decompositions are

articulated as compositions: each higher level is actually an aggregate of the lower-

level components (that it was decomposed to during analysis). Higher levels are

implemented as data structures containing instances of the lower-level components.

[Rissman and others, 1988:pp7-10]

The OOD-Paradigm's design team started the project with two basic goals:

eliminate nested implementations of objects (rationale discussed in Section 3.4.4)

and simplify dependencies among objects. Notable characteristics of the architecture

are the following:

I. The architecture consists of logical layers replacing the usually nested objects

found in a composition hierarchy. Though the control flow follows the hierar-

chy, data generally flows across the hierarchy, that is, data may pass directly

between different major software units without going up and down the hierar-

chy.

2. Templates are used for instantiating the architecture for new applications

within the flight-simulator domain.

3. Connectors are used to connect objects. This reduces coupling and renders the

objects themselves more reusable since there are no direct dependencies (Ada

"with"ing) between objects.

2.6.3 Granite Sentry Command and Control System. The Air Force

Space Command's Granite Sentry Program at Peterson AFB is using the SEI's

2-9

"model solution" approach for a C 3I application. They have consulted with The

SAE Project team at the SEI for help in developing their model solution. The

application is a multi-phase upgrade and replacement of the NORAD Computer

System (NCS) and the Modular Display System (MDS) in the Cheyenne Mountain

Complex of the North American Aerospace Defense Command (NORAD). Granite

Sentry is implemented using the Ada language. [Goyden, 1989:pp4O]

The message translation and validation part of the system was implemented

using the SEI's model solution for message handling. Many types of messages must

be handled (about 60 kinds, for example, air-related messages, missile-related mes-

sages, sensor messages, etc.). The recurring problems were identified and templates

were developed for implementing instances of the message types. The reusable ar-

chitecture is represented by the hierarchy of components needed to be combined to

instantiate a message type (Figure 2.3). This same solution has been used for other

C 3I applications [Rissman and others, 1989b:ppl] [Goyden, 1989:pp43-50].

Granite Sentry's design methodology follows the principles recommended by

the SAE Project at the SEI [Rissman and others, 1989b:pp56-67]. The project

team utilized the structural-model concept to employ an incremental, depth-first

software development process. First they were able to speed the design phase by

abstracting the details of how different messages types are handled. Then they

developed a working prototype that fully implemented the handling for one message

type. This was then used as a model to develop the templates so software for the

other message types could be instantiated. They found that this approach resulted

in higher productivity (34 Ada lines per programmer-day), less documentation, less

test effort, and more efficient reviews than traditional methods. [Goyden, 1989:pp49]

2.6.4 RAPID. Another research project using reusable designs is the Army

Information Systems Engineering Command's RAPID project (Reusable Ada Pack-

ages for Information System Development). The application is a management infor-

2-10

Ty~~E^'- AC~ TV
M0481 Salutlan Mods) Solu'tion

Message
Typecaster MessagejCD

Generic
Composite lCDUtilities

Typecasters

DiscreteFilUtiie
TypecastersFilUtiie

Generic
Discrete

Typecasters

LEGEND
SAds packages generated
frorn temptates

SAda ubhtf packages

Ads geflefC pacages

Ada Package dependency
-..-.~ (item at Wa is dependent

upoan item at head) o

Figure 2.3. Granite Sentryv Model Solution Architecture
[Rissman and others, 1989b:pp45]

2-11

mation system. The commonality basis for the architecture is resource management.

[Ruegsegger, 1988:pp16]

The RAPID architecture is a classic functional decomposition and forms a tree

(Figure 2.4). Reuse of the architecture is achieved through the use of Ada generics

in the leaf modules. These modules are instantiated for the "discrete resource of

interest" (like ammunition, repair parts, personnel, blood products, etc). Among

their findings Ruegsegger reported the following:

The generic architecture is a concrete implementation of the concept of
design reuse. The method devised for transforming SADT models to Ada
PDL provides a clear link between the two disciplines and preserves all
design decisions embodied in the original architecture model.

The development and use of generic architectures fosters the establish-
ment of standard architectures and promotes the habit of designing for
reusability. The generic architecture includes commonly applicable types
and operations, and it identifies for the developer those that need to be
defined. This has long-term benefits in the form of consistent, more easily
maintainable software architectures. [Ruegsegger, 1988:pp22]

2.6.5 University of Texas DBMS. [Batory and others, 1988:ppl-12]

Reusable architecture research has also been done at the University of Texas

on a DBMS. Using E-R (Entity-Relationship) modeling, they have developed an

architecture and a set of building blocks for interfacing the architecture components

using standardized interfaces. They claimed to be able to assemble a file-management

system in minutes that otherwise would take man-years of effort and hundreds of

thousands of dollars using traditional methods. Their basis of commonality is file-

management systems. Their method of customization is "include commands" in

their C compiler; needed modules are included and unneeded modules are left out.

2.6.6 Kiem's Keystone Methodology. [Kiem, 1989]

2-12

COORDINATE TRACK

ACTIONSO

RELRDSERER A
ASSETS ASSETS ASSETS PLANS AANCE STATUS

Figure 2.4. RAPID Hierarchy
[Ruegsegger, 1988:pp18]

Kiem's Keystone Methodology is included not because it is a reusable design

but because it develops designs that follow some of the principles supported by

this thesis: use of intermediary components to eliminate direct "with"ing between

problem-space objects (to enhance component reuse), and higher-level components

that are actually aggregates of lower-level objects to flatten the architecture and

increase efficiency. Here is the abstract of Kiem's paper:

The Keystone Methodology uses Entity-Relationship modeling to deter-
mine an optimum object-oriented packaging structure, which will exhibit
minimum coupling and inter-dependencies between elements of a system
and therefore maximum reusability potential. Furthermore, the result-
ing organization of the data dimension permits extensive use of a limited
range of generics to provide complete data manipulation through the
use of relational operations. The form and disposition of concurrent ele-
ments of a system can also be determined directly from the E-R model.
The modeling process is proven and the implementation of the resulting
design is systematic.

The Keystone methodology develops a design structure that is a composition

2-13

Integration of Model

Associotive
Entity Entity

JRt.Irttoonof B

Figure 2.5. Example of an Entity-Relationship Model

[Kiem, 1989:ppl01]

hierarchy. The designs are similar to the OOD-Paradigm in the way that higher-level

components are actually aggregates of instances of lower-level components. The Key-

stone methodology uses E-R modeling to identify the components and aggregates.

Components are from the problem space, aggregates are the relationships between

the components as identified by the E-R modeling (See Figures 2.5 and 2.6).

The method is proven in the sense that it has been applied to the development

of a now-fielded Air Force system: SARAH-lite. SARAH-lite was developed at the

Command and Control Systems Center at Tinker AFB, using a RationalTM envi-

ronment. The implementation runs on Zenith personal computers. The application
is a message preparation workstation.

Kiem claimed the method is systematic, which he said is contrary to traditional

OOD (informal strategy - eformal strategy described in Section 1.1.2).

2-14

Integrat~on of Model

A

Relationships B Associative

Figure 2.6. The Keystone Packaging Schema for the Previous Figure
[Kiem, 19 89 :pplO 2J

2-15

2.7 Characteristics Needed to Support Component Reuse

In addition to supporting design reuse, the design of a reusable architecture

should also consider supporting reuse at the component level. Actually, many of the

concepts of reusable design support component reuse as a side benefit.

Two kinds of component reuse are at issue:

1. "Swapping out" components in an implementation.

2. Reusing components between implementations.

The first kind would be useful for trying different components that perform

the same function, but with somewhat different characteristics. For example, an

electronic combat model may have several candidate radar units that model corre-

sponding alternate choices for radar components in the actual radar; the software

objects that model these radar components could be swapped out to compare effects

on performance.

The second kind is the conventional type of reuse we usually think of. This

would normally be intra-domain reuse. The SAE team made the following comment

on intra-domain reuse:

Flight simulators provide natural opportunities for reusing software. First,
different aircraft have the same kinds of components, e.g. engines, fuel

systems, electrical systems, etc. [Rissman and others, 1988:pp4]

These design characteristics are discussed in the following sections.

2.7.1 Object Oriented. This discussion brings to light an important char-

acteristic needed for the software components to be reusable: they should model their

real-world counterparts when possible. To do this the architecture should represent

an object-oriented design. Richard St. Dennis at Honeywell pointed out that for

2-16

a component to be reusable it should represent an object-oriented mapping of the

problem to the solution; that is, the software solution represents the human view of

the original problem [St. Dennis, 1987:pp515].

St. Dennis continues with the following:

Reusable software should act on objects explicitly. What we are advo-
cating here is a clear definition and method of 'acting' on objects. All
actions or operations on objects should be defined as subprograms (or
their equivalent) with the objects as parameters. Furthermore, the ob-
jects, or at least their types, should be 'packaged' as close to the definition
of the operations on them as possible. It is better not to use global data
that is changed implicitly by routines to which it is visible but to pass
the data to routines as parameters making it explicit that these routines
are actors/operators on the data and this is just how this data will be
treated (e.g. as input only, as a constant, and so forth). [St. Dennis,
1987:pp515]

2.7.2 Explicitly Defined Purpose/Function. Each object must have an

explicitly defined purpose. SofTech pointed out that each component intended for

reuse should implement a single well-defined function. The scope within which the

component is to be used and the degree of generality should be clearly stated. [SofT-

ecli, 19 8 5:pp 2 8]

2.7.3 Independent Objects. Low coupling and high cohesion is the key

here. Coupling must be kept to a minimum for components to be moved or ex-

changed.

Examples of design methods which lead to low coupling are the OOD-Paradigm

and Keystone methods (both presented earlier). Both use intermediary modules to

entirely remove direct coupling between software objects.

The CCSO pointed out the compromise that often must be made between

coupling and the use of system-wide tools for standardization. Although they used

an object-oriented design, their components were not reusable due to dependencies on

2-17

global tool packages. They standardized on the use of tools for buffer management,

linked-list manipulation, I/O, etc. Because of this, components were not reusable

since they depended on all these tools and associated types [CCSO, 1988:ppll-12].

Hardware, operating system, and compiler dependencies also must be kept to a

minimum. Of course, some software components require these kinds of dependencies

due to the nature of their function. Both Brown and the CCSO pointed out the need

to isolate these necessary dependencies. The amount of components with these kinds

of dependencies should be minimized; they should be clearly labeled and perhaps

grouped into a kernel layer. [Brown and Quanrud, 1988:pp3 9 1] [CCSO, 1988:pp1O]

2.7.4 Layered Architecture. The principle of designing at the higher lev-

els while abstracting the details of lower levels is fundamental in software design.

D'Ippolito at the SEI reminded us that software designers quickly get bogged down

in too much detail if they do not follow this principle [D'Ippolito, 1989:pp258]. This

is an important principle for reuse as well; the objective is to reuse at a high level

without the necessity of concern about how the low-level components accomplish

their tasks.

SofTech also pointed out that a layered architecture contributes to reusability

by giving us reuse levels. Different concerns can be separated into discrete layers

that can be separately replaced or tailored without affecting other layers [SofTech,

1985:pp22]. Ideally, the layers should decompose just as the problem space or real-

world object would. In the SEI's OOD-Paradigm report, a middle layer is an engine

mapping and the components on the next level down represent real-world engine

components [Rissman and others, 1988:ppl9].

2.7.5 Standard Interfaces. The University of Texas applied this principle

of standard interfaces in their approach to generic architectures. They said the

following:

2-18

Every object of an architecture is associated with a distinct class of mod-
ules. All modules are plug-compatible (for interchangeability), and each
module is a different implementation of the object.

Declaring an ad hoc interface to be a standard is the worst of all possibil-
ities. A better way is to 1) identify the class of implementations that are
to be supported, and 2) design the simplest interface that supports all im-
plementations of the class. The greater the number of implementations,
the more likely it is that the interface captures fundamental properties of
the object. Such an interface is no longer ad hoc because it is justified by
its demonstratable generality. We call this the simplest common inter-
face (SCI) method of standardized interface design. [Batory and others,
1988:pp3]

2.8 Object-Oriented Requirements Analysis

The foundation of the design phase, where the reusable designs are constructed,

is the requirements analysis phase which precedes it in the software development

lifecycle. The requirements analysis phase is very important as the design is derived

from products of the analysis. In preparation for the mapping method presentation

in the next chapter, which maps an object-oriented analysis to design, this section

overviews object-oriented requirements analysis. In addition to this, March's analysis

method is discussed in more depth in Section 3.2, and some hindsight comments on

the use of object-oriented analysis are given in Section 5.3.2.

Object-Oriented Requirements Analysis (OORA) is an approach to require-

ments analysis that moves the introduction of object-oriented techniques to an ear-

lier phase in the software lifecycle. An object-oriented approach is thought to map

more naturally to an object-oriented design than do other analysis methods [March,

1989:ppl-2] [AFIT, 1990] [EVB, 1989]. Object-oriented approaches were pioneered

by Booch and Abbott as a method of exploiting the features and constructs pro-

vided by the newly developed Ada programming language [March, 1989:ppl-1]. This

method of using an informal strategy as the basis for object-oriented analysis is more

recently rejected by many. This is because it inherently lacks rigor due to the i-

2-19

preciseness of the English language [Ladden, 1989:pp86]. In his thesis, March cited

Pressman, EVB, and Ladden in saying the following:

Recent research suggests the use of object-oriented techniques in the
earlier phase of requirements analysis provides a more coherent approach
to object-oi nted development. A complete life cycle object-oriented
methodology provides a stronger framework for the application of Ada
in he management of software complexity. [March, 1989:ppl-2]

OORA can be contrasted to other more traditional methods of requirements

analvsis such as data-flow oriented analysis and data-structure oriented analysis.

Data-flow analysis uses data-flow diagrams, a data dictionary to describe each "flow,"

and functional descriptions to describe each function (the nodes) in the data-flow

diagrams [Pressman, 1987:pp164-175]. DeMarco's Structured Analysis, and Your-

don and Constantine's Structured Methods and Structured Design are examples

of methods that are based on data-flow analysis (Do not be mislead by the word

"structured" in the names of these methods, these methods are not formal, they are

informal methods that use standard notations and embodiments of good practice

[Sommerville, 1989:pp1 79]). Data-structure oriented analysis methods focus on data

structure rather than data flow to represent software requirements. Key information

objects (also called entities or items) and operations are identified and a hierarchy

is formed to represent the requirements. Warnier-Orr and Jackson System Develop-

ment are examples of methods that are based on data structure oriented analysis.

[Pressman, 1987:pp293-333]

OORA, on the other hand, describes a system as a series of interacting objects

(or classes, since an object is an instance of a class) [EVB, 1989]. The interactions

can be seen as messages or operations. Objects generally are named using nouns;

messages are generally named using action verbs [AFIT. 1990]. The objects and

messages are derived from a (lcscription of the problem.

2-20

Objects/Classes can be identified using a top-down decomposition of the prob-

lem using the following steps as presented by [EVB, 1989]:

" View the system as an object, produce a precise and concise high-level descrip-

tion of the system.

" Graphically represent the object-oriented composition of the system using se-

mantic networks.

" Define the operations suffered by and required of the systt,..

" Describe the state information of the system.

" Verify the object-oriented representation of the system.

AFIT described another method of identifying objects using concept maps.

Concept maps are similar to entity relationship diagrams but simpler. They consist of

nodes (ovals) and directed arcs. Node names represent important entities or concepts

about a topic, and the directed arcs represent relationships among them (Figure 2.7).

Concept maps are used as a tool to model the problem space. Concept maps can be

leveled by developing lower-level maps to model lower levels of abstraction. Solution-

space concept Inaps are obtained by pruning the problem-space concept maps. Node

names can be mapped to objects and arc names to operations. [AFIT, 1990]

Both EVB's and AFIT's methods use object/class specifications to completely

describe each object identified. Object/Class specifications include the following:

" A narrative description.

" A graphical representation, both static and dynamic. The static representation

should be a semantic network (Figure 2.8). The dynamic representation may

be a state diagram, petri-net, or both (Figure 2.9).

" Operations, both suffered operations ard required operations.

" Possible states.

2-21

Require-

Develop rEssential(Graphical Ctmmun-)

Figure 2.7. Concept Map of "Concept Maps"

[March, 1989:pp2-16]

2-22

31 = 1I Full

HasAttribute

[LISTI

HasPart

Figure 2.8. Static Relationship Diagram for "List" Object

[EVB, 1989]

* Possible exceptions.

AFIT also used event-response lists and story boards to supplement the concept

maps and an overall object/class network diagram to summarize and show visibility

among all the objects [AFIT, 1990]. Section 4.3.1.1 contains an example of an event-

response list. See March's thesis for an example of story boards.

March developed his version of an object-oriented analysis method in his thesis.

Ilis method is intended mainly for embedded systems to be implementcd using Ada.

March's method is similar to A FIT's in that he used concept maps, story boards, and

2-23

Insert Remove

Insert B
Clear //

Remove

Insert

Figure 2.9. Dynamic Relationship - State Diagram for "List" Object
[EVB, 19891

2-24

event-response lists to communicate with the customer and identify objects/classes.

He also developed the idea of dividing requirements analysis into two steps: one

step for communicating with the customer/domain expert to obtain accurate and

complete requirements in a form the customer can verify and a second step for struc-

turing the requirements into a form the designer can more easily use to transform

into a design. He also introduced the idea of creating an object encyclopedia for

documenting the rough equivalent of a set of object/class specifications.

A more detailed presentation of March's method is presented in section 3.2.

2.9 Conclusion

The science of reusing designs is in its infancy at best. This chapter contains

some principles that can be applied toward design reuse and some approaches that

are currently being tried. A fundamental principle needed for design reuse is design

structure consistency. If we can develop a method of representing designs and map-

ping to designs that produces consistent solutions for problems in the same domain,

then we are definitely on the right road to design reuse.

The OOD-Paradigm exhibits many of the principles needed for design reuse.

Its principles are presented and used further in the next chapter.

2-25

III. A Method of Mapping from anl 0 "RA to a DCoSigo. That

Supports Reuse

3.1 Introduction

This chapter describes a method of mapping from the Object-Oriented Analy-

sis method proposed by Steve March in his thesis [March, 19 8 9 :ppl-l ... A-89], to a

design following closely the principles of "An OOD-Paradigm for Flight Simulators,

2nd Edition" report written by the SAE Project team at the Software Engineering

Institute [Rissman and others, 1988:ppl-120]. The chapter starts by first summariz-

ing the products available from March's analysis method. It then gives a detailed

description of the SEI design. This provides the domain and range of the map-

ping method. Benefits and characteristics of the OOD-Paradigm architecture are

summarized and discussed. The mapping method itself follows.

We make the following assumptions about March's analysis method and the

00D-a1) a ra digIn:

1. March's method provides a good representation of the requirements.

2. The SEI's OOD-Paradigm architecture represents a good design.
A design following the OOD-Paradigm architecture will exhibit the
benefits outlined in section 3.4. We are choosing to take a case
study approach to this report since it is assumed to be exemplary
of a reusable architecture approach to design.

These assumptions will be supported and discussed.

3.2 Overview of the Products of March's Analysis Method

[March, 19S9:ppl-1 ... A-89]

March's method involves two major steps, each producing a set of products.

These products are discussed in the following sections.

3-1

3.2.1 Step-One Products. Step One is intended to document the require-

ments of the customer and domain expert. The tools used and products developed

reflect this goal. The products of Step One are the following:

" Define the overall purpose of the software. This is the starting point

for understanding the software to be leveloped. This description may vary in

length from one sentence to one page.

" Concept maps. These provide a general understanding of the elements of

the overall problem and their inter-relationships.

" Story boards. This is a sequence of paper drawings depicting a user-view

scenario of the system as it runs. It is an early paper prototype of the proposed

system. It portrays a sequence of actions and can be used to portray the

physical layout of screen displays, though it is not limited to this.

" Event-response lists. These complement the concept maps by listing the

sequence of actions (responses) to be taken in the event of a particular stim-

ulus. Both external and internal stimuli are listed in the event-response list.

Maximum response time is part of the event-response list.

" Known software restrictions. These can be non-functional requirements

(size and timing constraints), regulatory restrictions, security, etc.

" Metarequirements. These are design decisions made by the customer apri-

or]. An example is the use of an internal data base format to ensure compati-

bility with other existing or planned software.

3.2.2 Step-Two Products. Step-one products are transformed into step-

two products, in a value added manner, resulting in products intended to be more

suitable for use by the designer. March says that step two adds structure to the

products of step one. The products of step two are the following:

3-2

" External interface diagram. Puts the software system in context with its

external environment.

" High-level actor object identification. This is the analog of the main

driver in a program. It controls/coordinates the action of part, or all, of the

rest of the the software.

* Organized preliminary object list. Objects are listed, grouped by class,

and formed into hierarchies when appropriate.

* Message senders and receivers. This is a transformation of the event-

response list created in Step One. The main change is that the events and

responses are viewed as messages and an attempt is made to identify the

senders/receivers of these messages. Message may be forwarded from object

to object.

" Object encyclopedia. - Each object/class is documented with an entry in

the object encyclopedia. Entries contain the following information:

- Textual description. This states the purpose of the class and miscella-

neous information not included anywhere else.

- Structure diagram. This shows attributes/subobjects. It looks like a

concept map but is limited to relations that are structural relations of the

class being discussed.

- Interface diagram. This is the communication of this object to other

objects in the system. This one also looks like a concept map, but it shows

the external view of the object/class. There should be a-correspondence

here between the interlaces to other classes and the messages received/sent

list.

- State transition diagram. This may help in identifying messages that

an object receives. It may also indicate that a certain message must be

3-3

received to transition the object into a different state. It is included if

appropriate.

- Message received/sent. Two lists naming the message and who it's

received/sent from/to.

- Description of state limitations. Some messages may be received/sent

only when the object is in a particular state.

- List of exported exceptions. Included if appropriate.

- List of exported constants. Included if appropriate.

- Reuse considerations. Explains if the object/class is application spe-

cific or if it may be generalized for use elsewhere.

3.3 Description of the OOD-Paradigm Architecture

[Rissman and others, 1988:ppl-120]

This description continues from the outline of the OOD-Paradigm presented

in Section 2.6.2.

The design team started the project with two basic goals: eliminate nested
implementations of objects (rationale discussed in Section 3.4.4) and simplify de-

pendencies among objects. Notable characteristics of the architecture that will be

discussed are the following:

1. Logical layers replacing the usually nested objects found in a composition hi-

erarchy.

2 Connectors for moving data between objects.

3. Templates for instantiating the architecture.

4. Object, managers as the lowest level templates.

3-4

3.3.1 Structure Overview. The architecture consists of three logical levels

(layers): the executive level, the system level, and the object level. An executive

controls the update of a set of systems, a system controls the update of a set of

objects. In the context of the earlier discussion on the composition hierarchy, a set

of systems can be seen as the result of a decomposition of an executive; and a set of

objects is the result of a decomposition of a system (Figure 3.1).

Starting at the bottom, the fundamental units of the architecture are objects

and connections, which constitute the object level. Objects use mathematical models

to represent real-world entities. An object's only interface to its environment is

through its connection object(s) (except possibly the global types package, called

StandardEingineeringTypes). In this way, objects operate in general ignorance of

the rest of the system. They map their inputs to their outputs and maintain their

state. The mathematical models, themselves, are provided by the manufacturer of

the aircraft components for the actual aircraft.

A connection is a mechanism for transferring state information between objects.

Invoking a connection results in reading the state of some objects on the connection

and broadcasting it to others. The two levels of connections are: executive level and

system level. Executive-level connections transfer state information between objects

in different systems, and system-level objects transfer state information between

objects in the same system. The object on one side of a connection may be a hardware

object. Connections perform data-type conversions when necessary (Figure 3.2).

Connecting procedures provide a consistent means of updating systems and

objects. Thus, connecting procedures provide a means for implicitly specifying con-

trol flow. No extraneous concepts or operations are required. They provide a locus

of control since all connections at an abstraction level are handled in one place.

A system, the middle level in the hierarchy, provides two abstractions. First,

it, logically groups a set of objects and their connections. Second, it provides an

update abstraction to update the objects as a unit in order to maintain system

3-5

FW-E-"6 -.CWVWtw &b-*x Eeie-ymgRhkv.6

IIp Enp-o BMW-NIDm_ w~cO ajLUEqwC~V

Cm 04C* 0.e~

Fn.~ im.Agure .. EIOverall ScotwaeAcictr

[Rismanand thes, 188:pl*

3-6

with Standard-.Engieering.Types;
with EngineSystemAggregate;
with Ignin....Systen..Aggregate;

with Flight-System_.Names,

with Burner._ObjectMar-gor,
with gitionObject _Mnager,

geparate (lght,..Executive..Connection..Mannger)

procedure Proces..ExternalConectionsTo._ngme _.Syetem is

InteratedDrive-.Energy: Genert..ObjectManagerEnergy,

Some -Spark: IgionObject,_Manaer.Spark;
The.3urner..Spark: BurerObject,_aager.Spark,

function SparkConverzion (In_.Spark : in Ignitiori..Object.Manager.Spark)
return Burner Object,_Manager.Spark is

begin
case In-.Spark is

when 0. 2 =>

RET'URN Burner...Object_ansger.None;
when 3 .. 9 =>

RETURN Burner-Object-Manager.ow-,
when 10 .. 20 =>

RETURN Buner-Object..Manager.High,
end case;

end Spark-.Conversion;

begin - ProcessExternalConnections_ToEnigine..ystemn

for An Engine in Fight.Systems-Name.Airvru&-Engines loop

Some-Spark: IgonObject-Manager.Get.SparkFrwn
(Ajgnition => Ignition Svstem_-Aggregate.Igitions

Cngines-Tojguition.Map CAn...Engne))Th

TheBurner_.Spark: Spark..Conversion (Some-.SparkY,

Brner -ObjecManager.iveSpark.To
(&.Burner => EngineSystem...AggregateEngines

(An-Engine).TheB-mer,
Given..Spark => TheBuner.Spark,

end loop ;
end ProcesExrnalonectiosjooEngine.yten;-

Figure 3.2. Executive-Level Connect ion-S park Conversion Routine
[Rissman and others, 1988:pp29]

3-7

OnhaoU NJewl Rmar2_OM MJOU Uhsd .0M FOO_ CM ExhastOM EZg-eaMo

Figure 3.3. SEI System-Level Architecture
[Rissman and others, 19 88 :pp14]

state consistency. The system performs the update by gating, i.e. invoking, all of its

system-level connections to transfer the states of the connected objects. (Figure 3.3).

At the upper-level, an executive performs a similar abstraction as a system.

At update time it gates all the executive-level connections and then calls its systems

to do their updates as described above (Figure 3.4). Distributed processing could be

achieved by distributing each executive to run on its own processor.

3.3.2 The System Abstraction. A system is an aggregation of objects,

and the connections between the objects, with a common goal. For example, the

3-8

FIghlExeme

FIIEz**aA _CanneclosoMEjSsu EWWnc iSpit-m AuinSYM~M

Figure 3.4. SEI Executive Level Architecture
[Rissman and others, 1988:pp13]

objects making up the engine system provide thrust; the objects of an electrical

system provide power. A system h_ updated as a unit.

Each system includes an "aggregate" package. This package contains the actual

instances of the objects ior that system (Figure 3.5). This- is possible because the

objects are abstract data types (private types) declared in each object manager.

This allows multiple instances of each object to exist. Operations on the objects

(implemented by the mathematical models) are of course part of the object managers

themselves. There is one object manager for each kind of object.

The developers employ an "object diagram" as a tool to map the real-world

objects to the architecture. Figure 3.6 represents the set of real-world objects being

mapped and Figure 3.7 is the object diagram mapping. Instantiation information for

the components of the architecture come from the object diagram once it is devel-

oped. The object diagram has icons that represent objects (rectangles), connections

(arrows), systems (roundtangles), and executives (shaded areas).

3-9

Fi~In.._Syswmegegz

OlfaOM ROM OM PtwO UwnarOM W...O IskM F.~aM EO i

AW2CO - fsa-inm

Figure 3.5. Connection Manager Software Architecture
[Rissman and others, 1988:ppl3]

3-10

Diff user Fa Duct Burner Engine Casing

Exhaust

Inlet air ,Mlo,

Rotor1 Rotor2

(Bleed valve - not shown)

Figure 3.6. Turbofan Engine Description
[Rissman and others, 1988:ppl8]

3-11

Innlmw lion
.A .. r -

(EAr m6V . ' . - Cabn A r Corsdilinwg

MacfrNum System
lriaI Pressure. . psrnag resr

Intel Terrprature. Mc ue s 8Pesr
Oracharge Thrust DmOcrarge Thrust EGT .EPR.Dh.g

A" . . Dischrge Air Flow

Fan ~ExhaustBed EDiffuser Duct Valve i

Otscttarge Pressure Inlet Preur g
Orscharge Temperature

Discharge AirFlow trlt Pressu, linlt Pressure IllArFo

Engine Casing a

Pressure. Temperature, Prssure. Temorretaur. Pressure, Temporature. Pressure. Temperature. Pressure.

. a1ima Twbme I Orschre Fan2 Oscflar Tutbne2 Dischane TmeaueIPressurmpeatre iPressure. Temperature. Presure. Temperature.v Presure. Temriperature.

Rotori ' F4tr2Brerr

Vibration:V

Figure 3.7. Turbofan Engine Object Diagram
[Rissman and others, 1988:ppl9]

3-12

3.3.3 Templates For Recreating Architecture Parts. Templates are

a kind of generic used for creating instances of most of the components of the

architecture. Standard naming conventions describe the package and subprogram

specifications, the implementor supplies the implementation details. An exam-

ple of the notation is "< Object > -Object-Manager," for the package name of

each object manager, where "< Object >" is replaced by the actual object name.

Also each object manager has exactly three types of suffered operations, which also

have standard names: "New- < Object >" to create new instances of the object,

"Give- < external-effect > -To" for writing external effects to an object, and

"Get- < object-output > -From" for reading the state from an object. Figure 3.8

shows a template ready to be used, in this case the object manager template, and

Figure 3.9 shows the object manager template after it has been instantiated for the

burner object.

Two steps are required to instantiate the architecture. First, an object diagram

must be created, which is then mapped to the components of the architecture. To cre-

ate an object diagram, the implementor first reviews the domain/requirements and

selects a set of real-world objects and connections. These are grouped into systems

fol ving real-world analogies. This information is mapped into an object diagram.

Once the object diagram is created, the architecture dictates the implementation.

An object diagram is created for eac. =ystrn. The software architecture can

then be derived mechanically (instantiating templates) from the set of object di-

agrams. The implementor fills in the details of the templates and provides the

appropriate mathematical models for the bodies of the object managers. There is

potential here for an automated tool to parse the object diagrams and generate

filled-in templates.

3-13

with StLndsrd_E ngmeenng_Types;
package <Object>._Object_Mjage- in

package Set renamee Standrd_Enginng3Tpa;
type <Object> is private;
type <Attte _2>in ?2;
type <Attz-ibutjI>is 77;

function New_<Object> return <Object>;

-I Descipioan
- I This fiunion ret un* a pointer to a new <object> sbjed
- I represetation. M pointer wil be used to identify
- I the object for state update ad hate vaortinpurposaa.
-I
- I Paramter Description:

-I return <object> which s aeons to a <object> object.

procedure Giv._<State_ bTo (A:<Object> : in cObject>;
Given_< nput >_<TypeI> : in S@L<Typeo_>;
Givendnput>_<Type_2>: in St.<Type..2>;
Given_<nput _<Type>: in S <Tp_ S>y.

-I Description"
I Iinitiates a change in the spediemi <object> objedts

-1I state Swen the nu yp.,
- I and the <input>s4<_3>.
- I
- I Parameter Description:
- I A_<objsct> ieifies the 4objed> whose state is to be change&
-1 Giv _<izpu _ is the <input> <rypji_>, in? ugs
-1I G~w r input>_<:ype_2> is the <ifput>a iye~ n It
-I Gwven_< iLut>nwype_3> is the <input> air flow, in iunit.

pragma Inline (Giv...<StataeJ>_To);

private
type cObject>_Representation;
- uncomplete type, defined in package body

type <Object> is ace <Objct>Rprmentation
- pointer to an <object> representation

end <Object>.Object_Mangur,

Figure 3.8. Object Manager Template Example
[Rissman and others, 1988:pp42]

3-14

with Standar&.Engineari&Types;

p-ckag. Bur rObject.Manager is

pecsg Set ranames Ste idardEngineru,&ype,

type Burneria privae;
a n Burner is an abstraction of a Buner within an Ensine.

"yp Spark is (None, LOW. Highf,
-burner net& only to know relagtve spwrk w

t"p Pia&Flow is (None. Flowing);
-the burner nonds to know oniy i i ha fue vial

functon NOewBurner return Burne-,

procedure GiveWetAjrTo
(A..Burner :in Burnr;
Given. niet prommuu, in Set.prem"r;
GivenInlet-Tempeature: in se.Tempratur.;
GivvenWsetAir-Flaw :In Set-Air-Flowy;

procedure Get.Discharge-.AirFrom
(A-Burnar: in Burner.
Ratrng.DischargePreusure: Out SeLprwnUr;
REeuiDLDischaegTmperature out Set.Tempersture
RatricbiargeAirF aw :out Set.Airjhw);

procedure Give..FbeIJow.To
(A-Burner in Burnr
QienulFlow: in ueLFow);

procedure Give-SPark-To (A.Burner :in Burner
Given.spark. in sparky.

prnrgma Inline (GvejnletAir.To,

Give NtelFlow. To.
Giv...Spark.To)

private
type Buru-PAerantation4

i,-u mpiete type. defined in package body

t"p Burnr is socese BunerRapreeanl
-pointer to an Burner nr rnitat ion

end Burnr..O~jet..Manager;

Figure 3.9. Burner Object Manager Package Specification
[Rissman and others, 198 8 :pp23]

3-15

3.4 Summary of Advantages and Characteristics of the OOD-Paradigm

Architecture

3.4.1 Supports Design Reuse. Design reuse can be discussed at two lev-

els: reuse within an application and reuse between applications. Design reuse within

an application was the accomplishment of the OOD-Paradigm. They first demon-

strated the design for the engine system; then they used the templates to instantiate

the design again for the electrical system of the simulator in a follow-on report [Riss-

man and others, 1989a].

Design reuse between applications is reusing a design solution from one ap-

plication in a second different application. This idea can be further divided into

reuse within the domain and reuse between domains. Reusing the flight-simulator

solution for a C141 on a C5 simulator would be reuse within the domain. This thesis

presents a method that reuses the design between domains. We utilize the principles,

structure, and constructs of the design to achieve a mapping method that develops

designs that are similar to each other and that exhibit the benefits listed in this

section.

Many advantages are inherent in reusing designs. Some of them are the fol-

lowing.

9 Less Testing Effort. Once the soundness of the basic design is established,

testing can be less stringent for reuses of the design. Also many of the test

procedures can be reused.

9 Higher Reliability. Reliability will have been proven and refined through

previous uses of the design.

* Less Maintenance Effort. Maintenance personnel can more easily under-

stand the design since it consists of reoccurring patterns.

9 Less Documentation Effort. Much of the documentation can be reused

from one instantiation of the design to the next.

3-16

3.4.2 Supports Component Reuse. The architecture supports both kinds

of component reuse mentioned in section 2.7 as follows:

" Objects can be exchanged for similar objects within an application because

templates and connections provide the plug-in type of interface needed for

"swapping-out" objects. Because connections insulate objects from compila-

tion dependencies, they provide a very elegant way to encourage this kind of

reuse. This kind of reuse is handy for modifying performance characteristics

of the simulator by exchanging an object for one that has somewhat different

characteristics.

Recompiling the package body of the changed object is all the recompiling

necessary since the specification of the object manager will not change. This

is true even if the new object's type representation is somewhat different since

this private-type definition can be placed in the package body.

" Object reuse between applications will be enhanced since objects developed for

the flight simulator are not tightly coupled to the simulator. This low coupling

means the object is independent, only modeling some real-world abstraction,

and is easily reused in a different application.

3.4.3 Easier Development Process. Reoccurring design patterns and

low coupling will make the OOD-Paradigm design easy to implement. Some back-

ground on how this is important is provided by Booch as he quotes Britton and

Parnas:

The overall goal of the decomposition into modules is the reduction of
software cost by allowing modules to be designed and revised indepen-
dently ... Each modules's structure should be simple enough thai it can
be undeustood fully; it should be possible to change implementation of
other modules without knowledge of the implementation of other mod-
tiles and without affecting the behavior of other modules: [and] the ease

3i- 7

of making a change in the design should bear a reasonable relationship
to the likelihood of the change being needed. (Booch, 1991:pp5l]

Connections facilitate independent development and reuse by insulating the

objects from each other and from compilation dependencies. Objects and systems

become stand-alone; each can be developed independently. Connecting procedures

provide a "firewall:" changes to objects on one side of a connection do not affect the

objects on the other side. Objects do not have to conform to the entire system, only

to the specifications and interface of the point where they plug in. Connections also

provide a systematic way to handle data-type mismatches.

3.4.4 More Efficient Implementation. The OOD-Paradigm implemen-

tation should be efficient owing to the no-nesting policy and the use of connections

to move data directly between objects (see also the timing and sizing discussion in

Section 5.2.2). Following one of the design goals, nested objects were avoided in the

architecture. The layers in the hierarchy are logical layers. Because of this, objects

at the lowest levels in the hierarchy can be interfaced without passing data through

all the intermediate levels. This can lead to a more natural and efficient simulation

of the real world.

Three of the authors, Mr D'Ippolito, Mr Rissman, and Mr Stewart pointed

out their two-fold rationale for avoiding object nesting during a personal meeting

(paraphrased):

1. The real world is better reflected when nested objects are avoided.
For example if a fuel tank object is part of a wing object and needs to
be refueled, with nested objects you refuel the wing rather than the
fuel tank. Also, the engine system contains a burner which needs a
spark from the ignition system. With nested objects the spark would
be applied to the engine theii passcd down o the burner. nis is not
iike the real-world case where the burner gets the spark directly from
the ignition via wires (i.e. the connector in their implementation).

3-18

2. Design complexity and overhead is increased with nested objects.
The highest-level object becomes a choke point for data and invoke
calls.

Just because the analysis process produces a decomposition of objects
does not mean the implementation of these must be nested. The use of
a logical hierarchy as described in the OOD-Paradigm is an example of
a method which avoids nested objects. [Rissman and others, 1989c]

The idea of avoiding object nesting runs contrary to de facto object-oriented

design: object nesting is a result of most object-oriented decompositions. Seide-

witz describes just this process as part of his General Object Oriented Development

(GOOD) method: higher-level objects are decomposed into lower-level objects and

implemented as nested objects [Seidewitz, 198 9 :ppl0l].

The OOD-Paradigm authors have carried the logical-hierarchy process a bit

farther than creating logical layers to implement analysis hierarchies. With the

de facto method of object decomposition, each decomposition may have a different

number of layers. Their method, however, utilizes standard levels with standard

names. Each decomposition looks remarkably like the next.

3.5 A Mapping Method from an OORA Method to a Design Following

OOD-Paradigm Principles

3.5.1 Background and Goals of the Mapping Method. The OOD-

Paradigm was developed to solve problems in the flight simulator domain, which

consists of time-driven problems. Although the mapping method presented pro-

duces designs based on the principles in the OOD-Paradigm, the problems used for

March's analysis are event driven, and therefore fundamentally different. The map-

ping method produces a design with a very similar structure, but with a somewhat

different control sequence. All the advantages given in section 3.4 are evident in the

designs resulting from the mapping method (see analysis in Section 4.4).

3-19

An additional requirement for designs resulting from the mapping method

are that they satisfy the quality criteria presented by [Pressman, 1987:pp216]. To

summarize his criteria, we can say that a design should exhibit a hierarchical or-

ganization, consist of independent modules, be derived using a repeatable method

driven by information obtained during software requirements analysis, and contain

a distinct and separable representation of data and procedure.

The design resulting from the mapping method satisfies the above quality cri-

teria. It is a high-level design and is summarized by two diagrammatic tools:

1. The Hierarchical-Structure Diagram, which represents the hierarchical or

static structure of the design.

2. The Object-Event Interconnection Diagram, which represents the dy-

namics or "procedure" of the system.

These two diagrams represent Pressman's criteria of distinct representations for

data and procedure. The mapping method for obtaining the two diagrams represent

Pressman's criteria of a repeatable method.

3.5.2 Overview of the Mapping Method. The mapping method in-

volves two transformation steps and introduces four representation tools for con-

ducting the transformations. These tools are the following:

1. The Object-Mapping Table which maps analysis objects to implementation

objects and implementation parameters.

2. The Hierarchical-Structure Diagram which organizes the implementation

objects defined in the Object-Mapping Table into a hierarchical/static design

structure. This diagram represents "levels of abstraction" and "aggregation"

as discussed by [Booch, 1991:pp58-59], and is our equivalent to the "Over-

all Software Architecture" diagram (figure 3-5) of the OOD-Paradigm paper

(copied in Figure 3.1 of this document).

3-20

3. The Event-Mapping List which maps analysis events to the dynamic repre-

sentation of the design.

4. The Object-Event Interconnection Diagram which summarizes the in-

formation from the Event-Mapping List into a quickly understandable dia-

grammatic format. This is our equivalent to the "Turbofan Engine Object

Diagram" of the OOD-Paradigm (figure 4-2), which is copied as Figure 3.6 of

this document.

The first transformation step consists of the four substeps of transforming

the analysis requirements to the four representation tools listed above. The second

step transforms these four representations into Ada specifications. The second step

also includes defining design templates for object managers and overall design reuse

parameters. The first step is described in Sections 3.5.3 through 3.5.5, the second

step is described in Sections 3.5.6 through 3.5.8.

3.5.3 Map All Objects Using an Object-Mapping Table. The first

substep is to map analysis objects. Not all objects from the analysis will map to

implementation objects, many will become high-level parameters. Most of these

parameters will be used to represent attributes and states of the implementation

objects and will be passed as data values in messages between the objects.

Create the Object-Mapping Table as a tool to conduct and document the

mapping. List each object from the Organized Object List of the analysis into the

first column of the table. Form successive columns for implementation object,

attribute/state, and parameter. Mark an X in the appropriate column for each

object in the first column. For those objects mapped to anything besides the second

column (implementation object), indicate which implementation object this analysis

object is becoming a state/attribute of, or parameter between (see Table 3.1).

3-21

ANALYSIS TMLMNAINATIUE AAEE
SOBJECTS OBJECTS ATIESTATE PA MER
Object Name 1 X
Object Name 2 X________

Object Name 3 X________
Object Name 4 X X

_____________(Object Name 2)

Object Name 5 X X
(Object Name 2)

Object Name 6 X ________

Object Name 7 X X
______________(Object Name 6)

Object Name 8 X
_____________(Object Name 6)

Object Name 9 X
(Object Name 6)

Object Namie 10 X
Object Namel 11 xX

_______________ (Object Name 6) ________

Object Name 12 X
_____________ ___________________ (Object Name 6) _ _______

Table 3.1. Object-Mapping Table

3-22

3.5.3.1 Heuristics for Mapping Objects. Implementation objects

should usually represent real-world entities or procedural abstractions (those which

have a coordinating effect over many of the other objects). The External Interface

Diagram and some of the high level Concept Maps from the analysis can be helpful

in identifying implementation objects that represent the real-world entities. The

High-Level Actor Object Identification section can be helpful in identifying impor-

tant procedural abstractions. Analysis objects that interface directly to a hardware

component should become implementation objects.

Analysis objects that can be used to identify an instance of an implementation

object should be an attribute. Analysis objects that can identify a state of an

implementation object such as current location, direction of travel, altitude, etc.,

should be states. Analysis objects that do not represent attributes or states but can

be used to carry message information between objects, such as a hardware address,

a filename, a steering course value that needs to be made, etc., should be marked as

parameters. Most states and attributes will also be parameters.

The bottom line for identifying implementation objects is to be aware that each

will either initiate events, respond to events, or both. A look at the Evrnt/Responsc

list and the jllhsatg Sendcrs and Jcccivcrs list, will help identify these initiators

and responders.

3.5.4 Structural Representation: Organize the Objects into the

Hierarchical-Structure Diagram. Now that we have our objects identified, as-

sernble them into a hierarchical diagram that reflects the structure of the problem.

This is the I ierarchical-Stricture Diagiam diagrain and it is the first of two high

level graphical representations of the design. This representation should reflect t he

static decomposition of the probleln, the data representation.

As otir counlterpart to the "Overall Software Architecture" (figi re 3- 5) in the

Oluf) P;tradigiii paper, tlhe iierarchical-Strictire l)iagrani slioiid follkw lIle samne

3 '23

EXECUTIVE

LEVEL

AGGREGATE AGGREGATE AGGREGATE

S Y ST EM

LEVEL

OBJ ECT

(MANAGER)

LEVEL

lince levcls: eeci ,ssteaelol"ject.

There is oil I ow. trlic level of object s 111 the diagram: the ob'ect level. Syst -Ills

are aggregat es of objects, and~ exccuiv es are aggregat es of systemi s. Tlhis decsign

therefore represenits a "flat. arch itecthire" (Figuire 3. 10).

3.5.4. 1 H eurristics For Mapping 1{equirernenits to the II icrar-

cliical-Strrrctrire D)iagramn. I'he h1Pihest levecl couce p1 map11 fr-ont the arllillysis" canl

bw he) pful I nin lo ifyigJical objeccfs (aiggregates) to bf COnJe~ systen is foer the "sys

tern" level. A]:,, t be Of rill ()vyanuized Pee bminai-y ObjcI/ Li"4 containis Iii rits for

(lecie ing whlia ppuc. iii' hcr whalt inl t ie ebi, Ilpsci ion. Fur examrph , inl sct on A .9

SA :31)) anlY ohc 1e tsInl the 11l(i n dc th lrot e: "aLss wi i ted withI (,;1(I1 eleva

3 2 1

tor." Also the Structure Diagrams and Interface Diagrams in the Object Dictionary

can hel) in putting objects in the right place on the diagram.

The same principle that was used to identify implementation objects can also

be used to draw the 11ierarchical-Structure Diagram. That is, follow real-world

analogies, model the solution after the real-world problem. This is a fundamental

object-oriented principle, as discussed in section 2.7.1, and should be used when

drawing this diagram.

3.5.5 Procedural Representation: Connect Objects with Events Us-

ing the Event-Mapping List and Object-Event Interconnection Diagram.

lollowing the examuple of the the O(OI)-laradigm (arid to some degree Kiem's Key-

stone Imethod [Kiein, 1989:pp101]) messages between objects are passed via con-

nectors. No direct interfacing between objects will occur in the implementation.

The mapping method assumes an event-driven problem because this is the type

of problem analyzed in March's thesis. Event-driven problems are also common

in embedded systems for which Ada was developed. In an event-driven problem,

events are in tiated within objects, usually reflecting the occurrence of an event in

the outside world. The object responds by sending messages to other objects. On

the other hand, in the timne-driven 001)-lIaradigii, events are initiated by a clock,

which invokes the connectors to transfer data between objects.

Tie mapping miethod uses an event-response model to develop tine design for

event(rivmn problems. The event-response 11ode1 is used for both identifying tine

seqi n'ice of riessages that riced to be passe(d letwee((- objects and (ocullientirig the

responses that objects and connctors should take to events and messages.

3.5.5.1 Use an Event-Mapping List. The Event-Mapping ,ist is

the tool used to map the Me.sa,(S'fnderrs and I(Tcer . list and the ly'1,(t/Hlsponms(

L1.4 b) obj(cts, (O lnectors, an(I(inssages. Each c I, at is mappe(l to a. connector and

3 25

the connector assumes the name of the event. The initiation of an event is mapped to

an object. Responses to events are also mapped to objects. At runtime, the initiator

invokes the connector when the event occurs, which in turn invokes the responder

objects (passing appropriate data of course). This implements the message-passing

process. During this mapping process, important parameters, variables, and types

are identified.

The procedural design is determined during the Event-Mapping List process

and as such the completed Event-Mapping List constitutes one of the most impor-

tant parts of the top-level design. Implementation objects were identified using the

Object-Mapping Table; now the connectors, and interactions between connectors

and objects, will be identified.

During the process of event mapping, The Message Senders and Receivers list

should be used to identify the initiator and responder objects for each event. The

process consists of progressing through the events in the Message Senders and Re-

ceivers list (or Event-Response List) one-by-one, and describing the message passing

needed to accomplish each responses listed for each event. All responses must be

assigned to an object, or in some cases a small procedural response may be assigned

to the message-carrying connector.

If the initiator/responder is a system-level object in the analysis, then a deter-

mination must be made as to which object in that system the initiator/responder

actually is. If the answer is not apparent, review the Description of Messages Sent

and Received in the Object Encyclopedia for each object in this system.

Defining a message that needs to be passed between objects generally adds

a message to the connector currently being defined. Often, connectors will send

only one message. Responder objects may respond by becoming initiators of new

messages, indicating the need for an additional connector, or it may be found that

an already identified connector can be called.

3-26

Some responses should be assigned to the initiator of the event; so no message

passing will be necessary for that particular response. Record the response in the

list, later it will be assigned to the object manager of the object.

A possible enhancement, to introduce time-driven requirements into this event-

driven model, would be to create a time-keeping object to initiate events.

The Event-Mapping List should use a format similar to the following; it may

be important to enforce the format by putting it on a form:

e Events 1 & 2: Copy the number and name of the event from the list. Put all

copied requirements in italics so they can be easily identified as requirements

being mapped.

- Initiator : Object-Name Name of the object that initiates the event.

- Responses: Copy the list of responses from the Event/Response List and

describe how each requirement in each response is satisfied. Break up a

response into sublists if the response involves more than one requirement.

Each response should be mapped either to a message that needs to be

passed or to a statement that the response will be conducted internal to

the initiator of the event. Example:

" 3a Read the floor number from the floor sensor input register. Ac-

cornplish internally to Floor-Sensor upon occurrence of event.

" 3b & 3c Extinguish the light on the location panel for the elevator

for the previous floor. & Illuminate the light on the location panel for

the current floor.

Connector needed: From Floor-Sensor to Location-Panel.

Connector name: Floor-Approach.

Location-Panel Command Needed: UpdateLocationIndi-

cator.

3-27

. Parameters/Variables: NewFloorNumber, ElevatorNumber.

- Maximum response time: 0.1 seconds.

Since the Event-Mapping List process creates an important part of the high-

level design, keep the following rules of thumb in mind:

" Have objects send messages directly to responding objects (via connectors).

" Objects do not interface directly to other objects, objects are not nested in ob-

jects, objects only interface to connectors, connectors only interface to objects.

" Keep architecture flat. Remember there is only one true level of objects.

" If an object is expected to perform one of the responses internally, and it was

not the initiator of the event, then be sure at least one of the connectors notifies

the object that the event occurred.

3.5.5.2 Object-Event Interconnection Diagram. The next step is

to represent the information from the Event-Mapping List in diagrammatic format

using the the Object-Event Interconnection Diagram. This diagram is the equivalent

of the "Object Diagram" (figure 4-2) of the OOD-Paradigm. It is equivalent in the

sense that it diagrammatically shows all objects, connections, and message passing

betwee them. Both can be transformed directly to Ada specifications (see also

Figure 3.11).

On the diagram, represent objects with Ada package icons and connectors with

roundtangles. The lines represent message passing. Line up the objects horizontally

across the middle of the diagram to represent the flat aichitecture. Because of this

flatness, "systems" and "executives" are not shown. Multiple instances of objects

within systems also are not shown since message passing is the same for each instance.

In the implementation, the connectors will have to reference both the system

level to access the instance of an object and the object level to access its operations.

3-28

CONNECT COCONECTO

essaegssag

Figure 3.11. Object- Event Interconnection Diagram

3-29

3.5.5.3 Sufficient or Complete Set of Object Operations. The

above mapping process results in a "sufficient" set of operations for this application

and for reuse at the design level. To implement the objects to be reusable in many

applications would require a "complete" set of operations [AFIT, 1990]. March de-

fined a much more extensive set of operations for each object in his analysis which, if

implemented with his set, would result in a near complete set of operations [March,

1989:ppA-35 ... A-88]. Berard points out that "completeness" is more than just op-

erations; he says we should also include exportable constants and exceptions [Berard,

1990b].

3.5.6 Mapping to Ada Specifications.

3.5.6.1 Ada Mapping Overview. Now that we have our four high-

level representations of the design, we're ready to map them to Ada specifications.

The Ada specifications map directly from the two diagrams. The components map

as follows:

" Objects. Each object defined at the object level of the Hierarchical-Structure

Diagram will map to an Ada "package," which will be named < ObjectVamc >

_Managcr. Each object-manager package will contain a definition of the object

as a private type and the required operations on the object. A template will

be developed for instantiating object-manager packages (see section 3.5.7).

" Connectors. Each connector defined in the Event-Mapping List will map to

an Ada procedure named for the connector. Connector procedures may be

defined stand alone or may be grouped into a package for convenience.

* Systems. Each system kind defined in thc Hierarchical-Structure Diagram

will map to a package named < SystcmNamc > -System Aggregate. These

packages will contain a data structure that contains instances of the objects

making up the systeun. Identification of these objects for grouping into the

3-30

system aggregate package also comes from the Hierarchical-Structure Diagram.

The data structure contains an additional dimension so that more than one

instance of a system can exist in the package; that is, only one system-aggregate

package is needed for each kind of system, regardless of the number of these

systems that will be used.

" Executives. In a similar way to systems, each executive kind from the

Hierarchical-Structure Diagram will map to a package called

< Executive-Jame > _ExecutiveAggregate.

" Parameters. Most of the parameters, variab , and types defined during

object and event mapping, which are used in conjunction with more than one

object, will be defined as types in the StandardEngineering_-Types package.

This package also contains the information needed to instantiate the design

(see Sections 3.5.8, A.1, and B.1).

3.5.6.2 Ada Mapping Products. The results of the Ada mapping

process will be the following:

" Complete ObjectManager package specifications. The object itself

should be defined as a private type. This private type should be an access

type which points to an instance of the representation of the object. The

representation generally will be either a record or a task type. Task types

are used if the object is one that will accept hardware interrupts. In either

case, objects will contain unique state and configuration information for each

instance.

" Complete SystemAggregate Package Specifications and Bodies. The

body of this package exists only to initialize the data structure containing

instances of the system objects.

3-31

Executive aggregate packages will exist if more than one executive exits. Mul-

tiple executives generally will be defined in larger systems or systems that will

be multi-processed.

" Complete Connector Procedures. Not just procedure specifications.

" Complete Standard__EngineeringTypes Package. Like the aggregate

packages, the types package may include a package body for initializing data

into a data structure.

" Elaboration Order Where Appropriate. For example, the system-aggregate

packages will be calling the object managers from the package body-initialization

section to initialize their data structures, so the object managers will need to

be elaborated befoie the system-aggregate packages.

3.5.6.3 Information Mapping. The Hierarchical-Structure Diagram

provides the information needed to build the static structure of the software. This

is done by defining the objects as object managers, the systems as system aggregate

packages, and executives as executive aggregate packages, and the corresponding

groupings for each.

The Object-Event Interconnection Diagram supplemented with the Event-

Mapping List, provides the information needed to identify the operations each object

manager should export, the identity of the connector procedures, the connectors each

object manager will need visibility to from the package body (using "with" clauses),

the object managers each connector will need visibility to, and the identity of nec-

essary messages with corresponding parameters.

The Object-Mapping Table identifies the parameters that will need to be de-

fined as types in the StandardiEngineeringTypes package.

All the information from the analysis should be on hand as supplement in-

formation during the Ada mapping process. For f-xample, the Afdardquircincnts

3-32

section of the analysis will be needed to define the configuration parts of the Stan-

dardEngineering_ Types package (see Sections 3.5.8, A.1, and B.1).

3.5.6.4 Ada Mapping Process. The process of defining the Ada

specifications is to walk through the Event-Mapping List using the Object-Event

Interconnection Diagram as a guide. The diagram identifies object managers and

their operations, connector procedures, and the "with"ing between them. Use the

List to be sure the definitions of the objects and connectors are complete in the sense

that all the requirements represented in the List are mapped to Ada specifications.

Check-off items in the List as they are mapped.

Create new instances of the object managers at the first reference to them in the

List (see object manager template discussion Section 3.5.7 and example Sections A.2,

A.3 and B.2). The "with" list at the top of each object manager can be derived from

the arrows on the diagram; arrows point to "with"ed components. Fill these in,

though later some should be moved to the package body if visibility to the "with"ed

component is not needed at the specification level. Object managers usually should

"with" only the StandardEngineering_ Types package from the specification part,

connectors should be "with"ed from the package body.

3.5.6.5 Document Mapped Requirements in Ada Specifica-

tions. The requirements mapped to each object should be documented in the pack-

age specification in a consistent and structured format. This format should be for-

mally defined in the object templates as discussed in the next section.

3.5.7 Develop Templates for Instantiating Object Managers. Ulti-

mately, defining the object packages will become a process of filling in the blanks of

an object template. The rationale for using templates is discussed in Sections 3.3 and

and 3.4. Examples from the elevator problem of an object-manager template and

instantiated object-manager templates are in appendix Sections A.2, A.3, and B.2.

3-33

The basic principle is to generalize existing Object Managers to realize the template

and then use the template for instantiating further object managers [Plinta and Lee,

198 9 :pp66]. Use the guidelines in the following sections for defining templates:

3.5.7.1 Look for the Reoccurring Pattern of Object Managers.

This concept is best explained through contrasting examples: In the OOD-Paradigm

for Flight Simulators, they call their model the "Object Connection and Update

Model" because they're modeling a system of objects that are updated at specific

time intervals (time driven) [Rissman and others, 1988:pp4]. On each time interval,

the connectors are invoked and they read the state from one object and pass it to

another. With this pattern in mind, they defined the reoccurring operations of the

object managers to be ones that get state from an object and give state to an object.

Event-driven problems lead to a stimulus/response kind of object operation.

Therefore the reoccurring operations are defined to be Applying a Stimulus and

Responding to a Stimulus. Since the example applications are embedded systems,

stimuli may come from either exported operations or hardware interrupts. Responses

are either internal state changes, hardware commands, or message sending. All

stimuli and corresponding responses should be systematically documented in the

object-manager package specifications (see examples in the appendices).

Because abstract data types are used to implement objects, a consistent mech-

anism for issuing new instances of the object is needed. For this purpose, each

object manager will export a function named: New- < Object >. This operation

will initialize the object with state and configuration data obtained from the Stan-

dardEngineeringTypes package as appropriate. This operation will be called by

the aggregate package during elaboration, in order to initialize each "system."

3.5.7.2 Develop A Standard Format For the Object Managers.

The standard format for the template should contain exported operation templates,

3-34

abstract data type templates, documentation templates, etc. The places where

names are needed to instantiate the templates should be enclosed in brackets < ... >.

The documentation template is important for the purpose of completing the

requirements trace. It should be structured to promote a clear understanding of the

nature of the object's operation (stimulus/response in the case of our examples). Re-

quirements from the Event-Mapping List (and other earlier listed sources, as needed,

such as the Object Dictionary) should be copied or paraphrased systematically to

the documentation template, along with bow each requirement is satisfied by the

package. The implementor of the object manager should be able to properly imple-

ment the package body from the documentation in the package specification and the

information in the StandardEngineeringTypes package.

3.5.7.3 Identify The "Generic" Parts. These generic parts are

templates needing to be filled in with instantiation parameters. The most fundamen-

tal of these parameters are the < Object-Name > and the < System-Name >. The

generic parts include exported-operation templates, "with"ing templates, object-

representation templates in the private part, etc (see Section A.2 for an example).

To avoid confusion, compare the two kinds of "generics," for which instances

are created, involved in this discussion of object managers (but neither includes the

using of Ada generics): The object-manager templates are used to instantiate new

object-manager packages during the current design process. The objects defined

in the object managers are abstract data types from which multiple instances are

created during run time; these are kept in a System Aggregate package.

3.5.7.4 Template Instantiation. The object templates are "instan-

tiated" by replacing all generic information with the particular information for the

object. Names are instantiated by using the global "find & replace" function of an

editor for each generic parameter. For example, the first find and replace will be to

replace the string "< Object >" for the actual object name.

3-35

Instantiating the documentation part of the template is very important for

tracing requirements, as mentioned, because this is where mapping of requirements

to Ada code is documented (see the object-manager examples in the appendices).

3.5.8 Develop the Standard_-EngineeringTypes package for Instan-

tiating the Design. This package serves two purposes:

1. It contains type definitions for the parameters defined during object Pad event

mapping. These are defined in the areas marked "PARAMETER AREA #X:."

2. It configures the design for reuse. The areas marked: "CONFIGURATION

AREA #X:" contain data used to instantiate the design. See the example in

Section A.1.

Adjusting the configuration values in the StandardEngineering_ Types package

is the most direct way of reusing the design (See Section 3.4 for a discussion of other

levels of reuse). The elevator problem example package contains 21 configurable

values, including the number of elevators controlled, number of floors in the build-

ing, the weight capacity of each elevator, hardware address, hardware commands,

and hardware interrupt vectors. This package can be thought of as a template for

instantiating the design implementation.

The source of information needed to decide what parameters should be made

generics in the configuration area of the Standard-Engineering_ Types package should

come from a domain analysis. Information needed to instantiate these parameters

can be found in the Metarequirements and Object Dictionary sections of the analysis.

3.5.9 Cross Check Transformations as a Tracing Step. Both trans-

formation steps should be cross checked. First reread the analysis and verify that

all the requirements are mapped into at least one of the four representation tools.

Then walk through the four tools and verify that each item is mapped to the Ada

3-36

specifications. The most important parts of the analysis to cross check are the

Event/Response List and the Metarequirernents section.

3-37

IV. Validation of the Mapping Method

4.1 Introduction

The mapping method presented in Chapter III can be validated by applying

it to two sample problems and comparing the results. One goal is that the resulting

designs for the two problems would be very similur. In the problem statement of

this thesis (Chapter I), we stated that one of the main problems with current design

methods was their tendency to create unique solutions, which greatly reduced the

potential for design reuse. A method that develops consistent designs is a large step

toward design reuse.

Other goals for the resulting designs are that they would exhibit the benefits

of Section 3.4 and would be able to be instantiated within at least some limited

domain.

This chapter applies the mapping method to the two problems analyzed by

March in his thesis [March, 1989:pp3-18 ... 3-39, A-1 ... A-89]; these are the Eleva-

tor Controller and Cruise Control problems. This chapter contains the first trans-

formation step for both problems, that is, transformation to the four representation

tools listed in Section 3.5.2. The second transformation step, to Ada specifications,

is included as the first two appendices. As an additional validation step, the elevator

design is implemented and the results are discussed at the end of the chapter.

4.2 The Elevator Problem.

4.2.1 Important Products from March's Analysis. The two items

from March's analysis most needed by the mapping method are the Organized Pre-

liminary Object List and the Message Senders and Rcceivers list. They are copied

in the next two sections for convenience:

4.2.1.1 Organized Preliminary Object List.

'1-1

Elevator Control System

Elevator

Elevator 1
Elevator 2
Elevator 3
Elevator 4

Direction

(Associated with each elevator.)

Floor Sensor

(Associated with each elevator.)

Elevator ID

(Associated with each elevator.)

Elevator Motor

(Associated with each elevator.)

Weight Sensor

(Associated with each elevator.)

Weight
Current Weight (Associated with each elevator.)

Load Capacity (Associated with each elevator.)

4-2

Control Panel

Elevator Control Panel (Associated with each elevator.)

UP Request Panel
DOWN Request Panel

Location Panel

(Associated with each elevator.)

List

Destination List (Associated with each elevator.)
Outstanding Request List

Floor

Summons Request

Input Register

Elevator Control Panel Input Register (1 for each elevator)
UP Request Panel Input Register
DOWN Request Panel Input Register
Floor Sensor Input Register (1 for each elevator)

Output Register

Elevator Control Panel Output Register (1 for each elevator)

UP Request Panel Output Register
DOWN Request Panel Output Register
Location Panel Output Register (1 for each elevator)

Address

(Associated with each input or output register.)

Interrupt Number

(Associated with each control panel and floor sensor.)

4-3

4.2.1.2 Message Senders and Receivers.

Eventl: A passenger issues an "up" summons from a particular floor (inter-
rupt).
Sender: UP Request Panel Receiver: Elevator Control System

Resp.ia: Read the Up Summons input register to determine the floor number
of the request. (Performed by UP Request Panel)

Rlb: Illuminate the light behind the button on the UP summons request
panel. (Performed by UP Request Panel)

Ric: If there is an idle (parked) elevator, send it to the floor where the
summons was issued. (Performed by Elevator Control System)

Rld: Add the request to the list of outstanding requests. (Performed by
Elevator Control System)

E2: A passenger issues a "down" summons from a particular floor (in-
terrupt).
Sender: DOWN Request Panel
Receiver: Elevator Control System

R2a: Read the DOWN Summons input register to determine the floor
number of the request. (Performed by DOWN Request Panel)

R2b: Illuminate the light behind the button on the DOWN summons
request panel. (Performed by DOWN Request Panel)

R2c: If there is an idle (parked) elevator, send it to the floor where the
summons was issued. (Performed by Elevator Control System)

R2d: Add the request to the list of outstanding requests. (Performed by
Elevator Control System)

E3: A sensor for an elevator signals its arrival at a particular floor (in-
terru pt).
Sender: Elevator Floor Sensor
Receiver: Elevator
Forwarded To: Elevator Control System

R3a: Read the floor number from the floor sensor input register for that
elevator. (Performed by Floor Sensor)

4-4

R3b: Extinguish the light on the location panel for the elevator for the
previous floor. (Performed by Elevator)

R3c: Illuminate the light on the location panel for the current floor. (Per-
formed by Elevator)

R3d: If the floor is listed in the destination list for the elevator, trien stop
the elevator at the floor and extinguish the light behind the floor
number on the elevator's control panel. After stopping, remove the
floor from the destination list, wait 3 seconds, then proceed to the
next destination. (Performed by Elevator)

R3e: If the floor and direction are listed in the outstanding request list,
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the outstanding request list. After stopping, wait 3
seconds, then proceed to the next destination. (Performed by Ele-
vator Control System)

E4: A passenger presses a destination button on the control panel of a
particular elevator (interrupt).
Sender: Elevator Control Panel
Recei ver: Eleva t or

R4a: Read the control panel input register to determine the desired floor
number. (Performed by Control Panel)

R,ib: Illuminate the light behind the button on the control panel for the
elevator. (Performed by Control Panel)

R4c: Add the floor to the destination list for the elevator. (Performed by

Elevator)

E5: An elevator becomes overloaded.

Inquiry Sender: Elevator
Inquiry Receiver: Weight Sensor

R5a: Disable the elevator so that it does not move until the overload
condition is gone. (Performed by Elevator)

R5b: Periodically (approximately every 5.0 seconds) check to see if the
overload is eliminated. (Performed by Elevator)

E6: Time to check elevator weight sensor (periodic).

4-5

R6: If current weight is less than max load. then respond to commands.
Otherwise, delay another 5 seconds and check the weight sensor
again. (Performed by Elevator)

4.2.2 Elevator Object-Mapping Table. This section maps the analysis

objects from the elevator problem to implementation objects. The list of analysis

objects is included as Section 4.2.1.1.

Following the heuristics of Section 3.5.3.1, of the 17 analysis objects (20 if each

elevator is counted as a separate object), 7 are mapped to implementation objects

(Table 4.1). For this embedded system, object identification follows real-world analo-

gies. One procedural abstraction is also identified as an object - the Elevator Control

System, which we call the Scheduler. Most of the other objects become attributes,

states, and parameters. Input and Output Register become address parameters. The

analysis object Summons Request was identified as an event so it is not mapped as

an implementation object.

4.2.3 Elevator Hierarchical-Structure Diagram. Now that we have our

implementation objects identified, we are ready to group them into their natural

hierarchy as described in Section 3.5.4.1. The objective is to group the objects

into systems and, if needed, executives. The elevator-control system is not complex

enough to be decomposed into multiple executives, so no executive will exist texcept

perhaps as a null procedure for the purpose of linking and initial invocation), but

it does decompose into three systems: the FloorPanels, Elevators, and Scheduler.

Although the elevator was identified as an object in the Object-Mapping Table, here

we recognize that the elevator is not an object but an aggregate of objects. The

Scheduler and FloorPanels systems each consist of one kind of object (Figure 4.1).

Among the heuristics used to draw the Hierarchical-Structure Diagram are

real-world analogies and Figure A.22 from the analysis - Elevator Control System

External Interface Diagram.

4-6

ANALYSIS IM LEMENTATION ATRIBUTE/ fPARAMETER
Elevator Controller X

System (Scheduler)
Elevator X

Direction X X

(Elevator) _________

Floor Sens-or X

Elevator ID X X

(Elevator)
Elcvator.%Motor X

Weight Sensor X

W1ei ght X X

___________________ (Elevator) _ _ _ _ _ _ _ _ _

Control I'anel X

Location Paniel x

1, is ,, Internal to
Scheduler

Floor x X

________________(Elevator, others)

Summons Rtequest Event____________

Address ____________ ______ ___X

Input Rtegister (Address)_________ __________X

OutPut Rtegister (Address)___________________

Interrupt Number TX

Table 4.1. Elevator Object- MNapping Table

4-7

(NONE FOR EXECUTIVE

ELEVATOR) LEVEL

FLOORPLS ELEVATORS SCHEDULER
PANELS

AGGREGATE AGGREGATE AGGREGATE

SYSTEM

LEVEL

FLOOR LOCATION FLOOR WEIGHT CONTROL

PANELS PANEL SENSOR SENSOR PANEL MOTOR SCHEDULER

(MANAGER)

LEVEL

Figure 4.1. Elevator hierarchical-Structure Diagram

4-8

4.2.4 Elevator Event-Mapping List. We are now ready to develop the

Event-Mapping List as described in Section 3.5.5.1. The mapping follows the Mes-

sage Senders and Receivers list, which was included as Section 4.2.1.2. For this prob-

lem, March faithfully reproduced the events and responses in the Message Senders

and Receivers list; therefore, all that is needed from the event/response list is maxi-

mum response times.

Events 1 and 2 were combined since they are the same event, differing only in

the value of the parameter: "Direction." The Event-Mapping List follows:

e Events 1 & 2: A passenger issues an "up"7"down" summons from a particular

floor (interrupt).

- Initiator: Floor-Panel.

- Responses as follows:

* Rla & R2a: Read input register to determine floor number of re-

quest. Accomplish internally to Floor-Panel upon occurrence of event.

* Rlb & R2b: Illuminate the light behind the button on the Up Sum-

mons request p,iel. Accomplish internally to Floor-Panel upon oc-

currence of event.

* Ric & R2c: If there is a an idle (parked) elevator, send it to the

floor where the summons was issued.

Connector needed: From Scheduler to Motor.

Connector Name: Proceed.

Motor Command needed: Go.

Parameters/Variables: Elevator_Number, Floor, Direction.

* Rid & R2d: Add the requests to the list of outstanding requests.

Connector needed: From Floor-Panel to Scheduler.

Connector Name: Summons.

4-9

Scheduler Command Needed: New-Summons.

Parameters/Variables: Floor, Direction.

Connector Processing: Call New-Summons with the parame-

ters.

- Average response time: 20 seconds for elevator to arrive.

e Event 3: A sensor for an elevator signals its arrival at a particular floor.

- Initiator: Floor-Sensor.

- Responses as follows:

* R3a: Read the floor number from the floor sensor input register.

Accomplish internally to Floor-Sensor upon occurrence of event.

* R3b & R3c: Extinguish the light on the location panel for the eleva-

tor for the previous floor. & Illuminate the light on the location panel

for the current floor.

Connector needed: From Floor-Sensor to Location-Panel.

Connector name: Floor-Approach.

Location-Panel Command Needed: UpdateLocationIndi-

cator.

Parameters/Variables: NewFloorNumber, ElevatorNumber.

* R3d: If the floor is listed in the destination list for the elevator, then

stop the elevator at the floor and extinguish the light behind the floor

number on the elevator's control panel. After stopping, remove the

floor from the destination list, wait 3 seconds, then proceed to the

next destination.

* R3e: If the floor and direction are listed in the outstanding request

list, then stop the elevator, at the floor. Extinguish tze light behind

4-10

the floor button on the proper request panel, and remove the sum-

mons request from the outstanding request list. After stopping, wait

3 seconds, then proceed to the next destination.

Combine R3d and R3e and then break up as follows:

* R3di; if the floor is listed in the destination/direction list for the

elevator then.

Connector needed: Floor-Sensor to Scheduler.

Connector name: Floor-Approach.

Scheduler Command Needed: Floor-Approaching.

Parameters/Variables: ElevatorNumber, Floor-Number, Di-

rection.

* R3dii: stop the elevator at the floor.

Connector needed: From Scheduler to Motor.

Connector n: me: Arrives.

* Motor Command Needed: Stop.

Parameters/Variables: ElevatorNumber.

* R3diii: extinguish the light behind the floor number on the elevators

control panel.

Connector needed: Scheduler to Control-Panel.

Connector name: Arrives.

Control-Panel Command Needed: ButtonLightOut.

Parameters/Variables: ElevatorNumber, Floor-Number.

* R3ei: extinguish the light behind the floor number on the floor panel

for this direction and floor.

Connector needed: Scheduler to Floor-Panel.

Connector name: Arrives.

4-11

Floor-Panel Command Needed: Light-Out.

Parameters/Variables: Floor-Number, Direction.

* R3div: After stopping, remove the floor from the destination list.

Done internally by Scheduler.

* R3dv: Also after stopping, wait 3 seconds, then proceed to the next

destination.

Connector needed: From Scheduler to Motor.

Connector name: Proceed.

Motor Command Needed: Go.

Parameters/Variables: Elevator-Number, Direction.

- Maximum response time: 0.1 seconds.

* Event 4: A passenger presses a destination button on the control panel of an

elevator.

- Initiator: Control-Panel.

- Responses as follows:

* R4a: Read the Control Panel input register to determine the desired

floor number. Done internally by Control-Panel.

* R4b: Illuminate the light behind 'he button on the Control Panel for

the elevator. Done internally by Control-Panel.

* R4c: Add the floor to the destination list for the elevator.

Connector needed: From Control-Panel to Scheduler.

Connector name: DestinationRequested.

Scheduler Command Needed: DestinationRequested.

Parameters/Variables: ElevatorNumber, Floor-Number.

* R4z: (added) if the Elevator is idle then dispatch it toward the floor

selected.

4-12

Connector needed: From Scheduler to Motor.

Connector name: Proceed.

Motor Command Needed: Go.

Parameters/Variables: ElevatorNumber, Direction.

- Maximum response time: 0.1 seconds.

9 Events 5 & 6: An elevator becomes overloaded.

- Initiator: WeightSensor.

Responses as follows:

* R5a & R6: Disable the elevator so that it does not move until

the overload condition is gone. Make this job part of the function

of the Proceed connector (event). Before calling Go of Motor the

WeightvSensor should be called to verify that the elevator is not over-

weight. Proceed is initiated by the Scheduler.

* R5b & R6: Periodically (approximately every 5.0 seconds) check

to see if the overload is eliminated. Also, make this job part of the

function of the Proceed connector. If the elevator was found to be

overweight, then repeatedly call the WeightSensor (every 5 seconds)

to see if the weight has changed to below the maximum. If it has

then the Proceed connector can go ahead and call the corresponding

Motor to Go.

- Maximum response time: 0.1 seconds.

4.2.5 Elevator Object-Event Interconnection Diagram. With the com-

pleted Event-Mapping List for the Elevator problem, the Object-Event Interconnec

tion Diagram can now be directly drawn as described in Section 3.5.5.2. Arcs from

connectors to responding objects are labeled with command or data names to make

the diagram more independently descriptive.

4-13

elevator,

..PRAHN AROCIVES

[update re%~~o

ight .. Eeao betEen necneto iga

4-1gh

4.2.6 Mapping to Ada Specifications. Now with the first transformation

step of the mapping method complete for the Elevator problem, the second step can

be accomplished: mapping the results of the first step to Ada specifications following

the guidance of Section 3.5.6. The result is included as Appendix A.

The specifications are presented in the order they were written. This order

approximates dependency order (which is defined by the diagrams and the "with"

clauses in the code). Depended upon components were written before dependent

components. StandardEngineeringTypes was written first, then the hierarchy de-

fined by the Hierarchical-Structure diagram was established by writing the object

managers and system aggregate packages. The procedural representation was then

established by writing the connectors. The object managers and connectors were

written directly from the Object-Event Interconnection diagram.

The Object Manager Template was written after the first few object manager

packages as described in Section 3.5.7. These first few Object Managers were writ-

ten as prototypes and then generalized to define the template (as was done by the

Granite Sentry project discussed in Section 2.6.3). The template was then used to

instantiate the other object managers both for this problem and the Cruise Con-

trol Problem. See the documentation sections of the Ada specifications for details.

The documentation section of the StandardEngineeringTypes package describes

the configuration parameters that must be modified to instantiate the design for

other applications within the domain (elevator controllers in this case).

This step completes the design of the Elevator problem. The only code re-

maining to be written by the implementor is the object manager package bodies.

4.3 The Cruise Control Problem

The mapping method will now be applied to the other problem analyzed by

March in Chapter III of his thesis: The Cruise Control problem.

4-15

4.3.1 Important Products from March's Analysis. The analysis items

most needed by the mapping method are the Organized Preliminary Object List,

and Message Senders and Receivers list, and for this problem we also need the

Event/Rcsponse List since March didn't copy all the responses to the Message

Senders and Receivers list this time. The corresponding analysis sections are copied

in the next three sections for convenience:

4.3.1.1 Cruise Control Event/Response List.

Eventl: The on button is pressed.

Resp.1: The cruise control system is activated.

Maximum response time: 0.5 seconds.

E2: Set speed button is pressed.

R2a: Cruise control system is engaged.

R2b: Set the desired speed equal to the current speed.

Maximum response time: 0.25 seconds.

E3: Time to update the throttle position (periodic).

R3: If engaged, then set the throttle based on the current speed vs. the
desired speed.

Projected event rate: 10 / second.

E4: Brake is pressed.

R4: Cruise control system is disengaged.

Maximum response time: 0.1 seconds.

E5: Resume button is pressed.

4-16

R5: Cruise control is engaged.

Maximum response time: 0.25 seconds.

E6: Accelerate button is pushed.

R6: Increment desired speed.

Maximum response time: 0.25 seconds.

E7: The off button is pressed.

R7a: Throttle control is disengaged.

R7b: Cruise control is deactivated.

Maximum response time: 0.1 seconds.

4.3.1.2 Cruise Control Preliminary Object List.

Cruise Control

Throttle control

Speed

Current Speed

Desired Speed

Button

Set Button

On Button

Off Button

Resume Button

Accelerate Button

4-17

Timer

4.3.1.3 Cruise Control Senders and Receivers of the Messages

/ Events.

Eventl: The on button is pressed.
Sender: On Button
Receiver: Cruise Control

E2: Set speed button is pressed.
Sender: Set Button
Receiver: Cruise Control

R2a: Cruise control system is engaged. (Performed by Cruise Control)

R2b: Set the desired speed equal to the current speed. (Performed by
Cruise Control)

E3: Time to update the throttle position (periodic).
Sender: Timer
Receiver: Cruise Control

E4: Brake is pressed.
Sender: Brake
Receiver: Cruise Control

E5: Resume button is pressed.
Sender: Resume Button
Receiver: Cruise Control

E6: Accelerate button is pushed.
Sender: Accelerate Button
Receiver: Cruise Control

E7: The off button is pressed.
Sender: Off Button
Receiver: Cruise Control

R7a: Throttle control is disengaged. (Performed by Cruise Control)

R7b: Cruise control is deactivated. (Performed by Cruise Control)

4-18

4.3.2 Completion of Cruise Control Hardware Interface Require-

ments. The Cruise Control Analysis is sufficiently complete to use the mapping

method except in the area of the hardware interface. Hardware interfacing informa-

tion is needed for the StandardEngineeringTypes package. This information will

be needed by the implementor of the object manager package bodies and for instan-

tiating the design implementation for different hardware. The hardware interface

information should be in the Metarequirements part of the analysis as it was for the

elevator problem.

To demonstrate the use of the mapping method on this problem, the analysis

in this area is expanded by assuming that the hardware interface works in a similar

way as the elevator problem, with the following added details:

1. Each button has an associated interrupt (including the brake', so each "but-

ton push" generates its associated interrupt. No registers must be read in

association with the interrupts. The interrupt numbers are as follows:

Set : 16#B1#

On : 16#B2#

Off : 16#B3#

Resume : 16#B4#

Accelerate : 16#B5#

Brake : 16#B6#

2. The Speed Sensor hardware has one 8-bit register. Its address is 16#Al#.

The Speed Sensor hardware maintains the speed of the vehicle in this register.

The speed is a hex integer and is maintained in units of miles-per-hour. The

Speed-Sensor software object need only read this register to get the speed

value.

4-19

3. The Throttle Control hardware has one 8-bit register. Its address is 16#A2#.

The throttle control hardware reads this register periodically to get commands.

The throttle control hardware has two states: "holding" and "release." It in-

terprets commands as follows:

9 Set: 16#10# - Hold the current throttle setting and put the hardware in

the "holding" state. This command is accepted in both hardware states.

* Speed Adjustment: Commands to change the throttle setting. The

hardware reads these commands only when in the "holding" state.

A value of 16#FF# tells the hardware to continue holding the current

throttle setting. Integer values of one to ten tell it to change the throttle

by various amounts: one is the smallest amount and ten is the largest. A

zero in the high-order bit means the change will be a deceleration, a one

indicates an acceleration. While in the active state, if any value is read

other than those listed below, the throttle control releases the throttle

and returns to the release state.

The actual command values are as follows:

- No change: 16#FF#

- Decelerate Increment 1: 16#01#

- Decelerate Increment 2: 16#02#

- Decelerate Increment 3: 16#03#

- Decelerate Increment 4: 16#04#

- Decelerate Increment 5: 16#05#

- Decelerate Increment 6: 16#06#

- Decelerate Increment 7: 16#07#

- Decelerate Increment 8: 16#08#

- Decelerate Increment 9: 16#09#

- Decelerate Increment 10: 16#OA#

4-20

- Accelerate Increment 1: 16#81#

- Accelerate Increment 2: 16#82#

- Accelerate Increment 3: 16#83#

- Accelerate Increment 4: 16#84#

- Accelerate Increment 5: 16#85#

- Accelerate Increment 6: 16#86#

- Accelerate Increment 7: 16#87#

- Accelerate Increment 8: 16#88#

- Accelerate Increment 9: 16#89#

- Accelerate Increment 10: 16#8A#

4.3.3 Cruise Control Object-Mapping Table. This section maps the

analysis objects from the Cruise Control problem to implementation objects. The

list of analysis objects is in Section 4.3.1.2.

Following the heuristics of Section 3.5.3.1, of the 13 analysis objects, 5 are

mapped to implementation objects (Table 4.2). For this embedded system, object

identificatiun follows real-world analogies. All the buttons, including the brake, will

be handled by one object called Button. The "Cruise Control" object will be mapped

to the "system" level in the next section and therefore is not a true object in the

sense of our mapping method.

A place to maintain system states is needed, because all the objects map to

hardware interfaces. In the elevator problem, the Scheduler object had sufficient

information to maintain any states it needed. For this problem, however, states

such as the speed that the Cruise Control is maintaining, and whether it is currently

engaged or not, needs to be commonly available. For this reason we add an additional

object called System-States.

4-21

ANALYSIS IMPLEMENTATION ATTRIBUTE/ PARAMETER
OBJECTS OBJECTS STATE

Cruise Control X
Throttle Control X
Speed Sensor X
Current Speed X X

(Speed Sensor)
Desired Speed X X

(Speed Sensor)
Button X
On Button X X

(Button)
Off Button X X

(Button)
Accelerate Button X X

(Button)
Set Button X X

(Button)
Resume Button X X

(Button)
Brake Pedel X X

(Button)
Timer X

,,__ _ System-States

Table 4.2. Cruise Control Object-Mapping Table

4-22

4.3.4 Cruise Control Hierarchical-Structure Diagram. The imple-

mentation objects are now identified and are ready to be grouped into their nat-

ural hierarchy as described in Section 3.5.4.1. The objective is to group the objects

into systems and, if needed, executives. The Cruise Control system is not complex

enough to be decomposed into multiple executives, so no executive will exist (except

perhaps as a null procedure for the purpose of linking and initial invocation).

Recognize here that the Cruise Control object it not really an object but an

aggregate of objects. It is, in fact, an aggregate of all the other objects. This

small application therefore maps to one "system" that is called the "Cruise Control

System" (Aggregate).

Real-world analogies and Figure 3.9 from the analysis - Cruise Control Sys-

tem External Interface Diagram - are among the heuristics used in drawing the

Hierarchical-Structure Diagram.

4.3.5 Cruise Control Event-Mapping List. The next step is to develop

the Event-Mapping List as described in Section 3.5.5.1. The mapping follows the

Event/Response List and Message Senders and Receivers list, which are included as

Sections 4.3.1.1 and 4.3.1.3. We are mainly following the Event/Response list of the

analysis because the events were not reproduced in the Senders and Receivers list.

In this problem the mapping creates exactly one connector for each event.

Because procedural objects do not occur in this problem, the connector for

event 3 ("Update") does more than just pass messages. It does the work of coordi-

nating the throttle and the speed when the "time to update throttle" event initiates

from the timer object.

Mapping List:

* Event 1 : The on button is pressed.

- Initiator: Buttons.

4-23

(NONE FOR EXECUTIVE

CRUISE CONTROL) LEVEL

CRUISE CONTROL

AGGREGATE

SYSTEM

LEVEL

THROTTLE SPEED SYSTEM

CONTROL SENO STATES BUTTONS TIMER

OBJECT

(MANAGER)

LEVEL

Figure 4.3. Cruise Control Hierarchical-Structure Diagram

4-24

- Responses: as follows:

• Ri: The Cruise Control System is activated.

Connector needed: From Buttons to SystemStates.

Connector name: Turn-On.

Parameters/Variables: None.

System-States Command Needed: Apply-On (sets a boolean

indicating the Cruise Control is turned on).

Connector Processing: Invoke Apply-On.

- Maximum response time: 0.5 seconds.

Event 2: Set speed button is pressed.

- Initiator: Buttons.

- Responses as follows:

" R2a: Cruise Control System is engaged

Connector needed: From Buttons to System-States.

Connector name: Set-Speed.

System-States Command Needed: ReturnOn (returns the

state of the "on" boolean), Apply-Engaged (sets a boolean indi-

cating that the Cruise Control is engaged).

Connector Processing: Invoke Return_On; if true invoke Ap-

ply-Engaged.

Parameters/Variables: None.

* R2b: Set the desired speed equal to the current speed.

Connector needed: From Buttons to Speed-Sensor,

System-States, and Throttle-Controller.

Connector name: Set.Speed.

4-25

Speed-Sensor Command Needed: Return-Speed (returns the

current speed).

* Throttle-Controller Command Needed: Set (tells the throt-

tle-controller to hold at the curr'-t setting).

SystemStates Com. - ,nd Needed: ApplyDesired -peed (loads

a variable maintaining the desired speed).

Connector Processing: Invoke Set, Invoke Return-Speed in

Speed-Sensor and then invoke ApplyDesiredSpeed with the speed

value.

Parameters/Variables: Current-Speed.

- Maximum response time: 0.25 seconds.

* Event 3: Time to Update the throttle position (periodic).

- Initiator: Timer.

- Responses as follows:

• R3: If engaged, then set the throttle based on the current speed vs.

the desired speed.

Connector needed: From Timer to Speed-Sensor, System States,

and Throttle-Controller.

Connector name: Update.

Speed-Sensor Command Needed: Return-Speed (returns the

current speed of travel).

ThrottleContr ler Command Needed: ChangeThruttleSet-

ting (this command should have a parameter to indicate if an

acceleration or deceleration is desired, and a scalar parameter to

indicate the relative amount of change needed).

4-26

System-States Command Needed: Return-Engaged (returns

boolean), ReturnDesiredSpeed (returns the desired speed as it

was last set).

Connector Processing: While Return-Engaged returns true

the connector should loop until ReturnDesiredSpeed is equal to

Return-Speed. If a change to ChangeThrottle.Setting is needed,

use a large increment if the speed is off by a large amount, and

a small increment if the speed is close. Delay and reread Cur-

rent-Speed for each loop, adjust the speed as necessary. Check

Return-Engaged frequently, abort if it changes to false. Refine to

make for a smooth speed adjustment.

Parameters/Variables: Desired-Speed, Acceleration / Decel-

eration scalar.

- Maximum response time: Update every 10 seconds, but do not invoke

if the last invocation has not completed.

9 Event 4: Brake is pressed.

- Initiator: Buttons.

- Responses as follows:

• R4: Cruise Control System is disengaged.

Connector needed: From Buttons to Throttle-Control and Sys-

temStates.

Connector name: Brake-Pressed.

Throttle_-Controller Command Needed: Release (Releases

the throttle completely).

System-States Command Needed: Disengage (sets an en-

gaged boolean to false).

Connector Processing: Invoke Release, Invoke Disengage.

4-27

. Parameters/Variables: None.

- Maximum response time: 0.1 seconds.

* Event 5: Resume button is pressed.

- Initiator: Buttons.

- Responses as follows:

* R5: Cruise Control System is engaged.

Connector needed: From Buttons to System-States.

Connector name: Resume.

SystemStates Command Needed: Apply-Engaged.

Connector Processing: Invoke ApplyEngaged (note: speed

will be adjusted next time the timer invokes).

Parameters/Variables: None.

- Maximum response time: 0.25 seconds.

* Event 6: Accelerate button is pushed.

- Initiator: Buttons.

- Responses as follows:

• R6: Increment Desired Speed.

Connector needed: From Buttons to System-States and Throt-

tleController.

Connector name: Accelerate.

Throttle-Controller Command Needed: ChangeThrottleSet-

ting.

System-States Command Needed: Return Engaged.

4-28

Connector Processing: Invoke Return-Engaged, if true then

Invoke ChangeThrottleSetting by one small increment in the

acceleration direction.

Parameters/Variables: None.

- Maximum response time: 0.25 seconds.

e Event 7: The off button is pressed.

- Initiator: Buttons.

- Responses as follows:

* R7a: Throttle control i5 disengaged.

Connector needed: From Buttons Throttle-Controller.

Connector name: Turn-Off.

Throttle-Controller Command Needed: Release.

Connector Processing: Invoke Release.

Parameters/Variables: None.

* R7b: Cruise Control System deactivated.

Connector needed: From Buttons to SysteriStates.

Connector name: Turn-Off.

System-States Command Needed: Disengage, Apply-Off.

Connector Processing: Invoke Disengage, invoke Apply-Off.

Parameters/Variables: None.

- Maximum response time: 0.1 seconds.

4.3.6 Cruise Control Object-Event Interconnection Diagram. With

the completed Event-Mapping List for the Cruise Control problem, the Object-Event

Interconnection Diagram can now be directly drawn as described in Section 3.5.5.2.

Arc, from connectors to responding objects are labeled with command or data names

to make the diagram more independently descriptive.

4-29

set n

ap lyspeedTUNO

speed?apl

THROTTLE SPEED SYSTEM

ONTROLLER \ SENSOR STATES BUTTONS TIMER

ngage

cha geRE SUME

disengage,

en a ed? pply-ott

di ngage

release

Figure 4.4. Cruise Control Object-Event Interconnection Diagram

4-30

4.3.7 Mapping to Ada Specifications. Now with the first transformation

step of the mapping method complete for the Cruise Control problem, the second

step can be accomplished: mapping the results of the first step to Ada specifications

following the guidance of Section 3.5.6. The result is included as Appendix B. The

Ada specifications were developed using the same process as for the elevator problem

described in Section 4.2.6 and the same comments apply.

4.4 Analysis

All the advantages of design reuse presented in Section 3.4, which can be shown

through design, are evident in these designs, as follows:

* The two designs are very similar. Both designs follow the same structure

pattern, use the same concepts and principles, and are represented using the

same tools. The same object template was used to instantiate the object

managers for both problems.

* The second problem was developed much more quickly than the first owing to

design pattern reuse, reuse of the object template, and reuse of other design

constructs.

• Each design can be instantiated within its somewhat limited domain.

" The objects have high potential for reuse because of very-low coupling. Each

depends only on the StandardEngineeringTypes package, and a connector

procedure if the object is an event initiator. However, many of the objects

have hardware dependencies. "Swapping out" the implementation part of an

object should also prove to be easy because of low coupling.

" Implementation will be easier because no direct compilation dependencies exist

between the objects. Each object can be developed in isolation of the others.

4-31

" The implementations should prove efficient because message passing employs

only one intermediary: a connector. No hierarchical bottlenecks are encoun-

tered in moving a message from initiator to responder.

* The designs are object oriented and closely resemble the real-world problem.

A fundamental benefit of these designs is consistency, both internally and be-

tween designs. An implementor or maintenance programmer who was familiar with

one of these designs could quickly become familiar with the other. Similarly, a de-

velopment orgamization having developed an application using one of these designs

could quickly develop an application using the other. Also, because of internal con-

sistency, a programmer familiar with one part of the design, could easily become

famitiar with another part.

4.5 Suggestions for Design Implementation

The implementor of the foregoing designs will need to write the package bodies

for the object managers. Also, because no main driver is inherit in the design, the

implementor will need to write a main driver procedure for the purpose of compil-

ing, linking, loading, and invoking the system as a unit. This driver only needs to

be a null procedure that directly and indirectly "with"s the other components. For

example, this procedure only needs to with the aggregate packages, the rest of the

components will be included since all object managers are withed by the aggregates,

each connector is withed by at least one (usually exactly one) object manager; the

StandardEngineeringTypes package is withed by the object managers also. Simi-

larly, if executives exist, then the main procedure need only with these executives.

4.6 Simulation Implementation of the Elevator Design

As an additional validation step, the elevator design presented in Section 4.2

and Appendix A was implemented as a simulation. The implementation demon-

strates that a directly usable design results from application of the mapping method.

4-32

The simulation was developed in Ada on a personal computer and targets to the

same. The design code from Appendix A was used; implementation of the package

bodies is included as Appendix C.

The simulation runs in real time for a realistic simulation; that is, it runs

interactively like an actual elevator system. Images of the elevators and buttons ap-

pear on the simulation screen. The simulation operator can enter summons requests

and destination requests from the keyboard at any time during the simulation. The

elevators can be seen to move up and down and the appropriate buttons are illumi-

nated on the screen in response to requests. Button lights are extinguished when

the elevator arrives. The simulation runs until the operator quits.

The elevator design was instantiated for 16 floors and four elevators using the

Number-of-Elevators and Number-of-Floors parameters in CONFIGURATION

AREA #1: of the StandardEngineeringTypes package. All the hardware addresses,

interrupts, and command values in this package were commented out because they

were not needed for the simulation.

A few minor changes had to be made to the design code in Appendix A.

Procedures had to be added to some of the object managers to supplement entry

statements assigned to interrupts. For example, the entry waiting for an interrupt

from the floor sensor had to be supplemented with an exported procedure to receive

flocr-approaching messages from the motor simulator. Another minor change was

necessitated by a perceived elaboration order problem by the binder that came with

the compiler. The system-aggregate packages were using the pragma "elaborate"

to ensure that they were elaborated last because they load data into their data

structures at elaboration time. The change was to load the data using an initialize

procedure instead.

Implementation was accomplished in about 5 working days. The package body

for the simulation screen controller was written by another student. A seni-colon

count to approximate Lines-Of-Code (LOC) was conducted and the results follow:

4-33

Standard Engineering Types (no body) 33 LOC

Object Manager Specifications :110 LOC

System Aggregate Packages 30 LOC

Connectors :65 LOC

Design Code TOTAL : 238 LOC

Object Manager Bodies 333 LOC

Mapping Method TOTAL 571 LOC

Simulation Driver : 98 LOC

Screen Controller Specification : 13 LOC

Screen Controller Body : 222 LOC

Simulation Grand TOTAL : 904 LOC

The results of the simulation implementation are very encouraging. Imple-

mentation of the design was quick and easy. The Ada design code produced by

the mapping method was used with no significant change. The design was easily

instantiated for the numbers of floors and elevators. By far the bulkiest of the

object-manager bodies was the Scheduler manager. This package appears to have

high potential for reuse, at the component level, due to its simple, straight-forward

interfaces. The implementation of the elevator problem demonstrates that the map-

ping method produces a design that works.

4-34

V. Conclusions and Recommendations

5.1 Summary of Contribution

5.1.1 Identification of Design Reuse Importance, Benefits, and Char-

acteristics. This thesis seeks to refocus the emphasis of reuse research from small

component reuse to design reuse. Chapter I identified the importance of design

reuse for improving software development productivity. Chapter II developed a bet-

ter definition of the idea through literary definitions, discussions of related issues, and

presentations of ground-breaking research and development in this area. Chapter II

also discussed characteristics a reusable design should exhibit to support smaller

component reuse as a side benefit in Section 2.7. Chapter III enumerated advan-

tages and characteristics of a particular reusable design developed at the Software

Engineering Institute in Section 3.4. An important goal of this thesis is to define

design reuse and to push the software development community toward evolving the

technology in this area.

5.1.2 A Mapping Method for Consistent, Reusable Designs. A spe-

cific contribution of this thesis is to present a method for mapping different problems

in the same application domain to similar design solutions. The fundamental idea

is that different software problems within the same domain should have very similar

design solutions; such designs become candidates for reuse within t',e domain.

This method directly addresses the problem statement of Chapter I, which

argues that design reuse is the threshold that needs to be broken to gain true advances

in the area of increased software-development productivity through reuse.

The method presented is suitable for embedded, event-driven software prob-

lems. The method maps from the products of March's Object-Oriented Analysis

method to a design based very closely on the principles of the OOD-Paradigm [Mai ch,

1989], [Rissman and others, 1988].

5-1

The method is validated by applying it to two problems and recognizing the

similar results, by assuming that a design following the principles of the OOD-

Paradigm will exhibit the benefits of Section 3.4, and by implementing one of the

resulting designs.

5.1.3 A Method of Design Representation. In Chapter 1, Biggerstaff

and Richter were quoted as complaining that no method existed for representing

designs in such form that they could be reused (like code is reused, see Section 1.1.1).

This problem was addressed in the following ways:

1. Creation of the Hierarchical-Structure diagram and the Object-Event Inter-

connect Diagram. A purpose of these diagrams is to force designs within the

domain to look the same. These diagrams lead to the same pattern from ap-

plication to application. The corresponding Ada specifications also look the

same.

2. Development of the method of following a design-pattern model to help in

generalizing a reusable design. The model used for the mapping method was

an event-response model.

3. Adoption of the Object Template from the OOD-Paradigm. The Object Tem-

plate is a design-component generic.

4. Adoption of the StandardEngineeringTypes package from the OOD-Paradigm.

The StaildardEngineeringTypes package was expanded here to contain spe-

cific configuration areas for instantiating an implementation within a domain

of application.

5.1.4 Designs That Are Quick to Implement. Because of the consistent

design patterns between object managers, implementation of the elevator design was

fast and painless. As described in Section 4.6, implementation of the elevator design

required only 5 days for about 670 lines of code (including 98 lines for the driver).

5-2

This time period included integration with the screen simulator, testing, debugging,

and time to install and become familiar with the compiler.

Implementation was speeded because very little design documentation had

to be referenced beyond the documentation in the specifications of the object man-

agers. Many of the implementation chores became repetitious and mechanical. Some

creativity was required, but none beyond the basic skills expected of a competent

programmer. Implementation did not require deviation from the design.

The consistent design patterns inherent in these designs, owing to the goal of

design reuse, can be concluded to enhance the implementation process.

See also Section 1.5, "Maximum Expected Gain," for more information on the

contribution of this thesis.

5.2 Related Further Research

This thesis breaks ground in the area of design reuse; many related issues

remain to be explored. These issues include both how these generalized solutions

will perform and in finding these general solutions.

5.2.1 Application to Larger Systems. Today's software systems are

large and problems of complexity multiply with larger systems. The real test of

any development method would be to have it succeed for a large system [Booch,

1991:pp2-23].

To handle large applications, the mapping method and OOD-Paradigm are

based on the idea of having two levels of aggregation: the system level and the ex-

ecutive level. The two example problems solved were not sufficiently large to utilize

more than one executive, therefore no executives were defined. The principle of the

executive, as pioneered by the SAE team at the SEI, is to distribute each executive

onto its own processor. This means that the connector concept may have to be ex-

5-:3

panded since distribution would likely mean that the executives would have to com-

municate via networks. Despite this, most message passing would still be conducted

at the lower levels of abstraction due to a basic interaction principle: "interactions

inside subsystems are more frequent than interactions between subsystems" (Booch

quotes Courtois [Booch, 1987:pp556]).

Even without the concern of distribution, larger systems may cause the number

of connectors to become unruly. A few possible approaches would be to group

connectors in packages or if the number of systems becomes very large some simplicity

may be restored b, having the aggregate packages provide the additional function

of the system-level connectors.

These and other concerns related to application to larger systems need to be

explored. Large system development should be an important area of research at

AFIT.

5.2.2 Timing and Sizing Studies. Experience has demonstrated that a

major shortcoming in the software engineering community is an inability to predict

the satisfaction of nonfunctional requirements from a design (to get the same expe-

rience become a regular reader of the comp.lang.ada bulletin board.). In particular,

Ada developers are developing the reputation for not being able to predict, or meet,

timing and sizing constraints. This factor is often the justification cited in requests

for Ada waivers.

Prediction of satisfaction of nonfunctional requirements from design is certainly

an area that could benefit greatly from design reuse. Once a design has been imple-

niented, a good basis exists for predicting the timing and sizing characteristics for

further uses of the design.

Of course, the design must follow good principles of performance engineering

design to begin with. A few leads for research in this area follow:

5-4

" The SEI series book: "Performance Engineering of Software Systems" by Con-

nie U. Smith [Smith, 1990:pp33-110], presents many important principles of

performance engineering that are applicable at the design stage. A good sug-

gestion might be to critique the OOD-Paradigm and mapping-method designs

against the "Principles for Creating Responsive Software" in chapter 2 of her

book.

Intuitively it would appear that, due to flatness of the resulting designs, the

mapping-method designs would fare well against at least the "independent"

type of principles listed in table 2.1 of her book.

" Also, the mapping-method designs appear amenable to performance measure-

ments owing to the flat architecture and the reuse aspects of the design and

components. Because the designs consist of communicating components at a

single level and reused objects may have known performance characteristics,

measurements may be possible by summing the values for each object and then

adding some overhead factor.

5.2.3 Categorizing Reusable Designs by Application Domains. Not

all software solutions can be made to fit the same general solution. Different kinds

of software problems will map to different kinds of general solutions. Brown and

Quanrud make the following statement in this regard:

A generic architecture is not intended for use outside of its specific do-
main. The expectation is that a separate architecture will be needed for
each different application domain. [Brown and Quanrud, 1988:pp390]

Plinta and Lee, who call reusable designs "models," point out that many of

these "models" need to be accumulated. They summarize a method of arriving at

them in the following quote:

5-5

To realize these payoffs [from Design Reuse, model databases must be
populated ... First, domain experts need to identify reoccurring prob-
lems in their domains ... Second, model solutions need to be developed
and verified ... Verification is based on both functionality and perfor-
mance ... After the solutions are verified, the prototype solutions are
generalized to produce code templates and generics. The templates and
generics help to insure that each instantiation of the model provides the
functionality specified by the model. They also promote code and com-
ment consistency. These characteristics encourage reuse. [Plinta and
Lee, 19 89 :pp66]

Chapter II demonstrated that general designs from two different domains can

appear quite different. Our suggestion for further research is to categorize general

solutions by domains. With such information in hand, a developer would have a

good idea of what the design patterns should look like very early in the development

just by knowing the problem's application domain

5.3 Suggestions For March's Analy,;, Method.

5.3.1 Make Requirements Tracing Easier. Overall March's analysis

method was found to be quite satisfactory. However, there were some difficulties

usi-g March's products in the area of requirements traceability. Paragraph 4.2.6

of [DoD-STD 2167A, 1985:ppl4] calls for traceability of requirements to design.

Traceability implies some way of labeling and/or enumeraing requirements. Of the

products of March's Analysis, only the Event/Response list and the Message Senders

and Receivers list enumerate requiicrments. Indeed, these lists are the key to tracing

requirements from his products and are the major products used by the mapping

method. Our concern is that all the other products of March's analysis (listed in

Section 3.2) do not have ready labels or numbers that can be used for tracing.

During the mapping process documented in Chapter IV of this thesis, the major

benefit of much of the information in March's analysis was to enhance familiarity

with the problem, but they were not necessarily mapped directly to design. Also,

a good deal of overlap occurs from one product to another because many of the

.5-6

products are actually intermediate steps used to understand the problem and to

derive the other products. For example, his analysis is bulging with concept maps,

but most of these do not nap directly to design, although used in combination with

other products they did help in making design mapping decisions.

The problemS with traceability come in when trying to decide which products

need to be mapped to design, and how to label them. Which products are traced and

which are there for the purpose of enhancing understanding? We choose to directly

map the Event/Response list, the Message Senders Receivers list, the Preliminary

Object List, and the Metarequirements. Perhaps the analysis should be more clear

on which products are to be traced, which are intermediate products, and which are

for the purpose of enhancing understanding of the problem.

5.3.2 Other Possible Uses. March's Object-Oriented analysis actually

does more than just define user requirements. It defines every concept from the

concept maps as an object and attempts to define all useful suffered operations for

each object. For this reason, it could probably be used as a domain analysis tool.

Because the method defines a structure between objects and operati, ns for

objects, it also could be considered a high-level design method as eluded to in

[Umphress, 1990]. However, if the design from the analysis were used, the result

would be subject to the same complaints raised in the problem statement of Chap-

ter I.

5.4 Closing Remarks

Design reuse needs to become common practice in the software-engineering

community to help propel us toward overcoming the symptoms of the software cri-

sis. Reusable designs should be developed using principles developed in this thesis

to achieve the benefits listed in Section 3.4. Some of these benefits of design reuse

are greater development productivity; less documentation, maintenance, and testing

5-7

effort; and greater reliability. The mapping method presented in this thesis leads to

consistently-structured designs that exhibit the potential for all these benefits. The

mapping method breaks new ground in the area of providing a reusable representa-

tion for designs. The mapping method presented here yields a basis for application

and further study in the area of reusable designs.

5-8

Appendix A. Ada Specifications for the Elevator Problem

A.1 Standard_-EngineeringTypes

with System;

package StandardEngineeringTypes is

--This package serves two purposes:
-- 1. It defines types for parameters that are used in the elevator

-- control system. These parameters were mapped from the

-- Object-Mapping Table that mapped all the objects defined in the

-- analysis. Areas marked "PARAMETER AREA #X:" contain parameters
-- that were mapped from the analysis.

-- 2. It configures the design for reusability. The areas marked:
.. ."CONFIGURATION AREA #X:" contain data used to instantiate the

-- design. The parameters that can be instantiated are:

..-- The number of elevators.

..-- The number of floors.

..-- The weight capacity of each elevator.

...-- All the hardware interface values, including:

..-- The interrupt vectors for each elevator, including:

..-- The floor sensor interrupt vector.

..-- The control panel interrupt vector.

..-- The register address for each elevator, including:

..-- The weight sensor register address.

..-- The control panel input register address.

..-- The control panel output register address.

..-- The floor sensor input register address.

..-- The location panel output register address.

..-- The motor control register address.

....-- The Motor Control Commands for each elevator, including:

..-- Motor Up command.

..-- Motor Down command.

..-- Motor Stop command.

..-- All the following values for the floor summons panels:

..-- The Up Interrupt vector.

..-- The Down Interrupt vector.

...-- The up input register address.

..-- The down input register address.

..-- The up output register address.

..-- The down output register address.

A-I

-- This means that the elevator control system can be configured for

-- different elevator hardware systems just by instantiating these

-- values.

--This design could be expanded to have multiple Schedulers and Summons
--Controllers.

...-- CONFIGURATION AREA #1:

Number-ofElevators constant 4;

Number-ofFloors constant 40;

--Nuber-ofFloorPanelControllers : constant 1;

--Number-ofSchedulers : constant 1;

--PARAMETER AREA #1:

type ElevatorIDType is range l..Number-ofElevators;

--type FloorPanelIDType is range 1..Number-ofFloorPanelControllers;

--type SchedulerIDType is range 1..Number-ofSchedulers;

type Floor-Type is range l..Number-ofFloors;

subtype Weight-Type is integer;

type Direction-Type is (up, down, parked);

--CONFIGURATION AREA #2:

--Bits : constant :=1;

--type Byte.Type is range 16#0O#..16#FF#;
--for ByteType'size use 8*Bits;

--PARAMETER AREA #2:

--I'd prefer to make these "Derived Types"
subtype InterruptNumType is System.Address;

subtype RegisterAddressType is System.Address;
subtype CommandByteType is System.Address;

A-2

type Elevator-Data is record

Control-Panel-Interrupt :Interrupt-Num-.Type;

Floor-Sensor-Interrupt :Interrupt-.Num-Type;

Weight-Senzor-Register :Register.Address-.Type;

Control-Panel-Input-Register :Register-.Address-.Type;

Control-Panel-Output-Register :Register-.Address-.Type;

Floor-Sensor-Input-Register :Register-.Address-.Type;

Location-Panel-Output.Register :Register-.Address-.Type;

Motor-Control-Register :Register-.Address-Type;

Motor-Comxnand-Up :CommandByte-Type;
Motor-Comxnand-Down :Comnxan-ByteType;
Motor-Command-Stop :Comand-Byte-Type;
Weight-Capacity-Hundreds :Weight-Type;

end Record;

type Elevator-Data-Array-Type is array(Elevator-ID-Type) of Elevator-Data;

Elevator-Data-Array :Elevator-.Data-Array-Type;

type Floor-Panel.Data-Type is record
UpInterrupt :Interrupt-Nun.Type;
Down-Interrupt :Interrupt-NumType;

Up-Input-Register :Register-Address-Type;
Down-.InputRegister: Register-Address-Type;

Up-Output-Register :Register-Address-Type;

Down-Output-Register :Register-Address-Type;

end record;

Floor-Panel-Data :Floor-Panel-Data-Type;

end Standard-Engineering-Types;

package body Standard-Engineering-Types is

begin
--Configure Elevator Data by plugging in the Interrupt Vectors, Register
--Address, and Hardware Commands:

A-3

--CNFIURAIONAREA #3:

--First Elevator:

Elevator-.Data-.Array(l) .Control-Panel-Interrupt :16#01#;

Elevator-Data..Array(1) .Floor-.Sensor,Interrupt :16#05#;

Elevator.Data-Array(1) .Weight-Sensor-Register :=16#31#;

Elevator..Data..Array(1) .Control..Yanel-Input-.Register :16#35#;

Elevator.-Data..Array(l) .Control-Panel-Output-Register :16#39#;

Elevator-Data-Array(1) .Floor-Sensor..Input-Register :=16#41#;

Elevator-Data-.Array(l) .Location-Panel-Output-Register :=16#45#;

ElevatorData-Array(1).Motor-.Control..Register :=16#51#;

Elevator-Data-Array(1) .Motor..CommandUp 16#01#;

Elevator..Data-Array(1) .Motor-Cornmand-Down :16#02#;

Elevator-Data-.Array(1) .Motor-.Comxand-Stop :16#03#;

Elevator-Data-Array(1) .Weight.Capacity.Hundreds :100;

--(10,000) lbs

--Second Elevator:

Elevator-Data-Array(2) .Control-Panel-Interrupt :=16#02#;

Elevator-Data-Array(2) .Floor.SensorInterrupt 16#06#;

Elevator-Data-.Array(2) .Weight-.Sensor-Register 16#32#;

Elevator..Data-Array(2) .Control-Panel-nputJiegister :16#36#;

Elevator-Data-Array(2) .Control-Panel-Output-Register :16#3A#;

Elevator-Data-Array(2) .Floor-Sensor-InputJRegister :16#42#;

Elevator-Data.Array(2) .Location-Panel-0utput..Register :16#46#;

Elevator-Data..Array(2) .Motor-Control-Register :16#52#;

Elevator-Data-Array(2) .Motor-.Cormmand-.Up :16#01#;

Elevator-Data..Array(2) .MotorCommand.Down :-16#02#;

Elevator-Data-Array(2) .Motor.ConmandStop :16#03#;

Elevdti-"ata-Array(4) .Weight-Capacity-Hundreds :100;

--(10,000) lbs

--Third Elevator:

Elevator-Data.Array(3) .Control-Panel-Interrupt :=16#03#;

A-4

Elevator-Data.Array(3) .Floor-Sensor-Interrupt 16#078;

Elevator-.Data-.Array(3) .Weight-.Sensor-.Register .16#33#;

Elevator-Data..Array(3) .Control-Panel-nput-Register 16#37#;
Elevator-.Data-.Array(3) .Control-Panel-Output-Register :16#3B#;

Elevator-.Data-.Array(3) .Floor-Sensor..Jnput..Register 16#43#;
Elevator-Data-Array(3) .Location-Panel.Output-.Register 16#47#;
Elevator-.Data-.Array(3) .Motor.Control-Register 16#53#;

Elevator-.Data-Array(3) .Motor-Command-Up 16#01#;

Elevator-.Data-.Array(3) .Motor-.Command-.Down -16802#;

Elevator-.Data-.Array (3) .Motor-Command.$top .- 16#03#;

Elevator-.Data-.Array(3) .Weight-Capacity-Hundreds 200;
--(20,000) lbs

--Forth Elevator:

Elevator-Data.Array(4) .Control-Panel-Interrupt :~16#04#;

Elevator.Data-.Array(4) .Floor-Sensor-Interrupt :16#08#;

Elevator.Data..Array(4) .Weight..Sensor-Register :16#34#;

Elevator-.Data-Array(4) .Control-.Panel-.Input-.Register :16#38#;

Elevator-.Data-Array(4) .Control-.Panel-Output-.Register 16#3C#;

Elevator-Data-.Array(4) .Floor-.Sensor-Input-.Register :16#44#;

Elevator-Data.Array(4) .Location-.Panel-.Output-.Register :16#48#;

Elevator.Data..Array (4) .Motor-Control-Register :16#54#;

Elevator-.Data-.Array(4) .Motor.Comnxand..Up :16#01#;

Elevator-Data-.Ar-ay (4) .Motor-ommand-Down :-16#02#;

Elevator-Data-Array (4). Motor-Command-Stop -16#03#;

Elevator-Data-Array(4) .Weight-Capacity-Hundreds .200;

--(20,000) lbs

--Configure Summons Panel Data by plugging in the Addresses:

Floor-Panel-Data.Up-nterrupt :16#OA#;

Floor-Panel-Data. Down-Interrupt :=16#OB#;

Floor-Panel-.Data.UpInput-Register :=16#4A#;

Floor-Panel-Data .Down-Input-Register :=16#4B#;

A-5

FloorPanelData.UpOutputRegister := 16#4C#;

FloorPanelData.DownOutputRegister : 16#4D#;

end StandardEngineeringTypes;

A.2 ObjectManagerTernplate

with StandardEngineeringTypes;

--with System --This with is needed if the object will receive
--interrupts.

--with <List of other "withed" components needed by package body. This

list should contain one or more connectors. This list should
be deleted upon implementation of the package body>;

package <Object>_Manager is

package SET renames StandardEngineeringTypes;

-------------------- > OBJECT REQUIREMENTS <----------------------------

STIMULUS SUMMARY:

List stimuli and their sources (i.e. all hardware
interrupts, all calls to exported functions/procedures).

RESPONSE SUMMARY:

Copy list from stimulus summary above and explain the

following for each:

- Response to stimulus.
- Whether the response is conducted internal to the object

manager or external. Sending messages to other objects

or software events outside the control of this object

should be considered external. Writing to hardware under

direct management of the object, or reading data from

the specification of another package should be
considered internal.

- Include references to the exported operations (below),

their parameters, and the fields of the
<Object>_Representation. It should be apparent what

A -(

all these things are for.

-- Here is an example of the format:

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
"New_<Obj ect>."

-- Continued list of stimuli

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- . Uses the interrupt value to create a new
-- £nstance of the task; it does this by assigning the

-- interrupt value to the FloorSensorInterruptNum
-- variable before creating the new instance.

-- Maintains copies of the incoming register value
-- and ElevatorID value for later use.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Copied Stimulus #2 from above

A-7

-- Continued List of Responses for each stimulus.

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > STATES MAINTAINED <------------------------------

--All the fields in the <Object>..Representation.

------------- - BJECT DEFINITION <------------------------------

type <ob-ect> Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New..AObject>(<System_.Level>_ID :SET.<System-.Level>-D-.Type;

Data needed to fill in fields of the
<Object>-.Representation);

return <Object>..Type;

procedure Apply-<Stimulus>.jo(This..AObject> in <Object>-Type;
<Parameters> in <Parameter>-Type;

function Return-<State>-From(This.AObject> in <Object>-Type)

return <Stat e>-Type;

A -8

private

--if no interups:
type <Object>-Representation is record

<Systen..Level>-.ID :SET.<System-Level>-ID-.Type;

.--States and attributes needed for this instance of the

--object.

end record;

--if this object will receive interrupts:

<Kind>-Interrupt-um : SET. Interrmpt-NumnType;

task type <Object>-.Representation is
entry Initialize

(Up..nput-hegister in SET.Register.Address-Type;

<Data needed by object>);

entry <Kind>-Interrupt;

<entrys to carry out required operations>;

for <Kind>-Interrupt use at <Kind>-nterruptNun;

end <Object>-.Representation;

--The full definition may be moved to the package body

--after implementation of the body is complete.

type <Object>jI'ype is access <Object>-Representation;

--pointer to a <Object>-.Representation

end <Object>.Manager;

A.3 Object-Mlanagers

A.3.1 Floor-Panel-Manager.

with Standard-Engineering-Types;

with System;

--with Summons (connector); -- needs to be "withed" from
-- the package body.

package Floor-Panel-Manager is

A-9

package SET renames StandardEngineeringTypes;

.....- .> OBJECT REQUIREMENTS < ----------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure

"NewFloorPanel."

-- 2. Receives an interrupt indicating that a summons button was
-- pressed from one of the floors.

-- Source of Stimulus : interrupt from hardware

(Up/DownInterrupt).

-- 3. Receives a call indicating that the light undei one of the

-- summons buttons should be extinguished.

-- Source of Stimulus : call to exported procedure

(ApplyLightOutTo).

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Uses the two interrupt values in creating a new

-- instance of the task; it does this by assigning the

-- interrupt values to the Up/DownInterruptAddress
-- variables before creating the new instance.

-- ii. Uses correspondingly named fields of the

-- FloorPanelData record to initialize the task

-- using the "initialize" entry. The FloorPanelData

- - record is in the StandardEngineeringTypes

-- package.

-- iii. Returns an instance of the object to the caller.

A-10

-- b. External Response:

-- i. none.

-- 2. Receives an interrupt indicating that a summons button was
-- pressed from one of the floors.

-- a. Internal Response:

-- i. Reads the memory mapped eight-bit input register
-- (Up/DownInputRegister) to determine from which

-- floor the summons button was pushed.

-- ii. Writes to the appropriate output register
- - (Up/DownOutputRegister) to turn on the

-- appropriate button light (Writing the floor number

-- to this register toggles the light).

-- b. External Response:

-- i. Invokes the -Summons_ connector (event) procedure to

-- indicate that a summons has occurred. The parameters
-- needed to call Summons are Floor and Direction.

-- 3. Receives a call indicating that the light under one of the

-- summons buttons should be extinguished.

-- a. Internal Response:

-- i. Writes to the appropriate output register
-- (Up/DownOutputRegister) to turn off the

-- appropriate button light (Writing the floor number

-- to this register toggles the light).

-- b. External Response:

-- i. none

---------- ---------- > END OBJECT REQUIREMENTS < ----------------------

------- - > STATES MAINTAINED < ---------------------------

A-11

-- --All the fields in the Floor.Panel-Representation

-- --The state of the lights is recognized by the hardware. If

-- one of the buttons is illuminated the hardware will not

-- cause an interrupt if that button is pushed.

---------------- > OBJECT DEFINITION <------------------------------

type Floor-Panel-Type is private;

------------ > EXPORTED OPERATIONS <------------------------------

function NewFloor-Panel
(UpInterrupt SET. Interrupt-Nuin§Iype;
Down-Interrupt SET. Interrupt.Num-Type)

return Floor-Panel-Type;

procedure Apply-Light-Out-To(This-Floor-Panel in Floor..Yanel-Type;

Floor in SET.Floor.Type;

Direction in SET.Direction-Type);

private

Up-Interrupt-Address SET. Interrupt-Num-Type;

Down-Interrupt.Address SET. Interrupt-Num.Type;

task type Floor-.Panel-Representation is

entry Initiall.ze

(Up-Input-Register in SET.Register-Address-.Type;

Down..Input-Register in SET.Register.Address-Type;
Up-Output-Register in SET.Register.Address-Type;

Down-Output-Register in SET.Register-Address-Type);

entry Up-Interrupt;

entry Down-Interrupt;

entry Light..Out(Floor in SET.Floor.Type;

Direction in SET.Direction-Type);

for Up-Interrupt use at Tlp-Interrupt.Address;

A-]12

for Down-Interrupt use at DownInterruptAddress;

end FloorPanelRepresentation;

--This entire private part definition can be moved to the

--package body after implementation of the body is

--complete.

type FloorPanelType is access FloorPanelRepresentation;
--pointer to a FloorPanelRepresentation

end Floor-Panel-Manager;

A.3.2 Weight_SensorManager.

with StandardEngineeringTypes;

--with: No packages "withed" from body

package WeightSensorManager is

package SET renames StandardEngineeringTypes;

-------------------- > OBJECT REQUIREMENTS < ---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
"New-WeightSensor."

-- 2. Receives a call to determine if the Elevator Weight is
-- below or equal to the maximum for this elevator.

-- Source of Stimulus: call to exported procedure
"Return WeightOKFrom."

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Loads values from the ElevatorDataArray to the
-- corresponding fields of the

WeightSensorRepresentation. The

A-13

-- ElevatorDataArray is in the

-- StandardEngineeringTypes package. The proper

-- record in the array is found by indexing using the

-- ElevatorID passed in.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to determine if the elevator weight is
-- exceeds the maximum for this elevator.

-- a. Internal Response:

-- i. Reads the memory mapped eight-bit input register

-- (WeightSensorRegister) to determine the current
-- weight of the elevator.

-- ii. Compares the current weight of the elevator to the

- - maximum weight for this elevator
-- (WeightCapacityHundreds).

-- iii. Returns false in the elevator weight exceeds the

-- maximum, returns true otherwise.

-- b. External Response:

-- i. none.

-------------------- > END OBJECT REQUIREMENTS < ----------------------

- > STATES MAINTAINED < ---------------------------

--All the fields in the WeightSensorRepresentation.

A-14

------- ----- > OBJECT DEFINITION <------------------------------

type Weight-Sensor-Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function NewWeight-Sensor
(Elevator-ID :SET.Elevator-ID-Type) return Weight-SensorType;

function Return-Weight-OK-From

(This-.Weight-Sensor :Weight-Sensor-Type) return boolean;

private

type Weight-Sensor-Representation is record

Elevator-ID :SET.Elevator-ID-Type;
Weight-Sensor-Register SET.-Register.Address-Type;

Weight-Capacity-Hundreds SET.Weight-Type;

end record;
-- The full definition may be moved to the package body
-- after implementation of the body is complete.

type Weight-Sensor-Type is access Weight..Sensor-.Representation;
--pointer to a Weight-.Sensor.Representation

end Weight-Sensor-Manager;

A.3.3 Scheduleri\4anager.

with Standard-Eiigineering-Types;

--with Arrives, Proceed;

package Scheduler-Manager is

package SET renames Standard-Engineering-Types;

A-15

-------------------- > OBJECT REQUIREMENTS < ---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
"NewScheduler."'

-- 2. Receives a summons request indicating a would-be passenger
-- is waiting on one of the floors.

-- Source of stimulus : exported procedure (ApplySummonsTo)

-- 3. Receives a destination indicating a passenger selected a

-- floor button from inside an elevator.

-- Source of stimulus : exported procedure
(ApplyDestinationRequestTo).

-- 4. Receives an indication that an elevator is approaching a

-- floor.

-- Source of stimulus : exported procedure
(ApplyFloorApproaching).

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Return an instance of the Scheduler to the caller

-- b. External Response:

-- i. none.

-- 2. Receives a summons request indicated a would-be passenger

-- is waiting on one of the floors.

A-16

-- a. Internal Response:

-- i. Add the request to a list of outstanding requests

-- for that floor and direction.

-- b. External Response:

-- i. If there is an idle elevator, dispatch it to the
-- floor where the summons was issued by invoking the

-- connector "Proceed."

-- 3. Receives a destination indicating a passenger selected a

-- floor button from inside an elevator.

-- a. Internal Response:

-- i. Add the request to the destination list for the
-- elevator.

-- b. External Response:

-- i. If the elevator is idle then dispatch it toward

-- the selected floor by invoking the connector
-- "Proceed."

-- 4. Receives an indication that an elevator is approaching a

-- floor.

-- a. Internal Response:

-- i. Check to see if the elevator is scheduled to stop

-- at this floor for this direction (the Scheduler
-- knows which direction the elevator is traveling);

-- ii. After stopping, remove floor from the destination

-- list for this elevator.

-- b. External Response:

-- i. If the elevator is scheduled to stop at this floor

-- and direction then call connector "Arrives."

-- ii. After the elevator is stopped for three seconds

-- then have it proceed to the next destination by

A-17

-- calling connector "Proceed."

-- Note: Since the floor sensor does not signal

-- stopped, we will have to estimate how long it

-- take the elevator to stop and add that to the
-- three seconds. This additional delay time could

-- be added as a configuration item in the

-- StandardEngineeringTypes package.

-------------------- > END OBJECT REQUIREMENTS < ----------------------

-------------------- > STATES MAINTAINED <- --------------------------

-- 1. List of pending destinations for each elevator

-- 2. List of pending Summons for each for each floor and direction

-- 3. Current state of each elevator sufficient for efficient

-- scheduling. Sufficient information is available from the

-- knowledge of the last floor a elevator reported from, and the

-- direction it was dispatched. There is no need to query elevator

-- components about their state.

-------------------- > OBJECT DEFINITION <---------------------------

type SchedulerType is private;

-------------------- > EXPORTED OPERATIONS <---------------------------

function NewScheduler return SchedulerType;

procedure ApplySummonsTo(ThisScheduler : in SchedulerType;
From-Floor : in SET.FloorType;

Direction : in SET.DirectionType);

procedure ApplyDestinationRequestTo
(ThisScheduler : in SchedulerType;

Elevator in SET.ElevatorIDType;

A -I

Floor in SET.Floor-Type);

procedure Apply-Floor-Approaching

(This-Scheduler in Scheduler-.Type;
Floor :in SET.Floor-Type;
Elevator :in SET.Elevator-ID-Type);

private

type Scheduler-Representation;

--incomplete type, defined in package body

type Scheduler-Type is access Scheduler-Representation;

--pointer to a Floor-Panel-Representation

end Scheduler-Manager;

A.3.4 Lo cationA-Panel-Manager.

with Standard-Engineering-Types;

-- with: No packages "withed" from body

package Location-.Panel-Manager is

package SET renames Standard-Engineering-Types;

-- - - - - - --- - -) OBJECT REQUIREMENTS <- - - - - - - - - - - - - -

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure

"New-Location-Panel."1

-- 2. Receives a call to update the lights in the floor

-- indicator panel.

-- Source of Stimulus: call to exported procedure
"Apply-UApdate-Location.Irndicator .1

-- RESPONSE SUMMARY:

A -19

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Loads values from the ElevatorDataArray to the

- - corresponding fields of the

-- LocationPanelRepresentation. The

- - ElevatorDataArray is in the

-- StandardEngineeringTypes package. The proper

-- record in the array is found by indexing using the

-- ElevatorID passed in.

-- ii. Returns an instance of the object to the caller.

-- b. External Respor.se:

-- i. none.

-- 2. Receives a call to update the lights in the floor

-- indicator panel.

-- a. Internal Response:

-- i. Writes the floor number of the indicator light

-- which is currently lit

-- (Current _FloorIndicatorLit) to the appropriate

-- output register (LocationPanelOutputRegister) to

-- turn off the light to the previous floor. (Writing

-- the floor number to this register toggles the

-- light).

-- ii. Writes the floor number of the indicator light

-- which is to be lighted (New-Floor) to the

- - appropriate output register

-- (Location-Panel_-Output_-Register) to turn on the

-- light. (Writing the floor number to this register

-- toggles the light).

-- iii. Updates CurrentFloorIndicatorLit to equal

-- New-Floor.

-- b. External Response:

A-20

-- a.none

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > STATES MAINTAINED <------------------------------

-- All the fields in the Location..Panel-Representation.

------- ----- > OBJECT DEFINITION <------------------------------

type Location-Panel-Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New.LocationPanel(Elevator-ID :SET.Elevator-ID-ype)
return Location-Panel-Type;

procedure ApplyUpdateLocationIndicator
(This-Location-Panel in Location-Panel-Type;
New-Floor in SET.Floor-Type);

private

type Location-Panel.Representation is record

Elevator-ID-Type :SET.Elevator-ID-Type;

Current-Floor-.Indicator-Lit SET. Floor-Type;

Location-Panel-Output-Register SET.Register-Address-Type;

end record;
--The full definition may be moved to the package body

--after implementation of the body is complete.

type Location-Panel-Type is access Location.Panel-Representation;

A-21

--pointer to a LocationPanelRepresentation

end LocationPanelManager;

A.3.5 ControlPanel-Manager.

with StandardEngineeringTypes;

with System;

--with Destination-Requested (connector); --needs to be "withed" from
--the package body.

package ControlPanelManager is

package SET renames StandardEngineeringTypes;

-------------------- > OBJECT REQUIREMENTS <----------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
"New.ControlPanel."

-- 2. Receives an interrupt indicating that a floor has been

-- requested.

- - Source of Stimulus : interrupt from hardware
(ControlPanel-Interrupt).

-- 3. Receives a call indicating that the light under one of the

-- destination buttons should be extinguished.

-- Source of Stimulus : call to exported procedure
(ApplyLightOutTo).

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Interral Response:

A-22

-- i. Uses the interrupt value to create a new

-- instance of the task; it does this by assigning the

-- interrupt value to the ControlPanelInterruptNum
-- variable before creating the new instance.

-- ii. Uses correspondingly named fields of the

-- ElevatorDataArray to initialize the task using
-- the "initialize" entry. The Elevator.Data.Array is in

-- the StandardEngineeringTypes package. The proper

-- record in the array is found by indexing using the

-- E~evatorID passed in.

-- iii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives an interrupt indicating that a floor has been

-- requested.

-- a. Internal Response:

-- i. Reads the memory mapped eight-bit input register

- - (ControlPanelInputRegister) to determine which

-- floor was selected.

-- ii. Writes to the appropriate output register
- - (ControlPanelOutputRegister) to turn on the

- - appropriate button light (Writing the floor number

-- to this register toggles the light).

-- b. External Response:

-- i. Invokes the _DestinationRequested_ connector

-- procedure to indicate that a destination request has

-- occurred. The parameters needed to call

-- _DestinationRequested_ are ElevatorID and Floor.

-- 3. Receives a call indicating that the light under one of the

-- destination buttons should be extinguished.

A-23

-- a. Internal Response:

-- i. Writes to the appropriate output register

-- (Control-.PanelOutput.Register) to turn off the

-- appropriate button light (Writing the floor number

-- to this register toggles the light).

-- b. External Response:

-- i. none

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > STATES MAINTAINED <------------------------------

---- All the fields in the Control-.Panel-Representation

---- The state of the lights is recognized by the hardware. If one of

-- the buttons is illuminated the hardware will not cause an

-- interrupt if that button is pushed.

------- ----- > OBJECT DEFINITION <------------------------------

type Control.Panel-.Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New-Control-.Panel
(Elevator-ID :SET.Elevator-ID..Type;

Control-Panel-Interrupt SET. Interrupt-NuznType)

return Control-Panel.Type:

procedure Apply-Light-Out-To

A-24

(This-Control-Panel in ControlPP.Y T

Floor in SET.Floc, ;_.,_;

private

Control-Panel-InterruptNum SET.Interrupt-Num-Type;

task type Control..Yanel-Repr9sentation is

entry Initialize

(Elevator-ID in SET.ElevatorID-Type;
Control-Panel-Input.Register in SET.Register-Address-Type;

Control-.PanelOutput-Register in SET.Register-Address-Type);

entry Control..PanelInterrupt;

entry Light-Out(Floor :in SET.Floor-Type);

for Control-Panel-Interrupt use at Control-Panel-InterruptNun;

end Control-Panel-Representation;

--The full definition may be moved to the package body

--after implementation of the body iS complete.

type Control-Panel.Type is access Control-.Panel-.Representation;

--pointer to a Control-Panel-Representation

end Control-.Panel.Yanager;

A.3.6 Flo or-Sensorlvlanager.

with Standard.Engineering-Types;

with System;

--with Floor-Approaching (Connector); --Move this to the package body

package Floor.Sensor-Manager is

package SET renames Standard.Engineering-Types;

------ ------> OBJECT REQUIREMENTS <------------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

A -25

-- Source of Stimulus: call to exported procedure

"NewFloorSensor."

-- 2. Receives interrupt indicating that the elevator is
-- approaching a floor.

-- Source of Stimulus: interrupt from hardware

(FloorSensorInterrupt).

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Uses the interrupt value to create a new

-- instance of the task; it does this by assigning the
-- interrupt value to the FloorSensorInterruptNum

-- variable before creating the new instance.

-- ii. Uses correspondingly named fields of the
-- ElevatornataArray to initialize the task using

-- the "initialize" entry. The ElevatorDataArray is in

-- the StandardEngineeringTypes package. The proper

-- eecord in the array is found by indexing using the

-- EievatorID passed in.

-- iii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives interrupt indicating that the elevator is
-- approaching a floor.

-- a. Internal Response:

-- i. Reads the memory mapped eight-bit input register

-- (FloorSensorInputRegistar) to determine which

-- floor is being approached.

A-26

-- b. External Response:

-- 1i. Invokes the .Floor-Approaching. connector procedure

-- to indicate that the elevator is approaching a

-- floor. Parameters needed to call .Floor-.Approaching.

-- are Elevator-ID and Floor.

------- ----- > END OBJECT REQUIREMENTS <------------------------

------ --- > STATES MAINTAINED <------------------------------

-- All the fields in the Floor-.Sensor.Representation.

------ ---- > OBJECT DEFINITION <------------------------------

type Floor-Sensor.Jype is private;

------ ---- > EXPORTED OPERATIONS <------------------------------

function NewFloor-.Sensor
(ElevatorID: SET.ElevatorID-ype;
Floor-Sensor..Interrupt :SET. Interrupt-Num.Type)

return Floor-.Sensor-Type;

private

Floor-Sensor-nterrupt-Nun : SET. Interrupt-Num-Type;

task type Floor..Sensor.Representation is

entry Initialize

(Elevcator..ID :in SET.Elevatcr-ID-Type;

Floor-Sensor-Input-Register :in SET.Register-Address-Type);

A-27

entry FloorSensorInterrupt;

for FloorSensorInterrupt use at FloorSensorInterruptNum;

end FloorSensorRepresentation;

--The full definition may be moved to the package body

--after implementation of the body is complete.

type FloorSensorType is access FloorSensorRepresentation;

--pointer to a FloorSensorRepresentation

end FloorSensorManager;

A.3.7 Motor-Manager.

with StandardEngineeringTypes;

package Motor-Manager is

package SET renames StandardEngineeringTypes;

-------------------- > OBJECT REQUIREMENTS < ---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure "New-Motor."

-- 2. Receives a call to make the motor go. "Go" can be up or

-- down.

-- Source of stimulus: call to exported procedure.

-- 3. Receives a call to make the motor stop.

-- Source of stimulus: call to exported procedure.

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Loads values from the ElevatorDataArray to the

A-28

-- corresponding fields of the Motor-Representation.

-- The ElevatorDataArray is in the
- - StandardEngineeringTypes package. The proper

-- record in the array is found by indexing using the
-- ElevatorID passed in.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to make the motor go. "Go" can be up or
-- down.

-- a. Internal Response:

-- i. Write appropriate output command

-- (MotorCommandUp/Down) to the motor control

-- register for this motor (MotorControlRegister).

-- b. External Response:

-- i. none.

-- 3. Receives a call to make the motor stop.

-- a. Internal Response:

-- i. Write appropriate output command
- - (MotorCommand_Stop) to the motor control register
- - for this motor (MotorControlRegister).

-- b. External Response:

-- i. none.

-------------------- > END OBJECT REQUIREMENTS < ----------------------

A-29

- - - - - - - --> STATES MAINTAINED <- - - - - - - - - - - - - -

--All the fields in the Motor-.Representation.

------ --- > OBJECT DEFINITION <------------------------------

type Motor-Type is private;

------ --- > EXPORTED OPERATIONS <------------------------------

function Newj.otor(Elevator.ID :in SET.Elevator-DType)

return Motor-Type;

procedure Apply-Go-To(This-Motor in Motor-.Type;

Direction in SET.Direction-Type);

procedure Apply-Stop-o(This-Motor :in Motor-Type);

private

type Motor-Representation is record

Elevator-.ID SET.Elevator-.ID-Type;

Motor-Control-Register SET. Register.Address-Type;

Motor-Command.Jp SET.Comxnand-Byte-Type;

Motor-Command..Down SET. Command..Byte.Type;

Motor-Command-Stop SET. Command-Byte-Type;

end record;

--The full definition may be moved to the package body

--after implementation of the body is complete.

type Motor-Type is access Motor-Representation;

--pointer to a Floor.Panel-Representation

end MotorManager;

A-30

A.4 SystemAggregate Packages

A.4.1 Elevator-System Aggregate.

with Standard.Engineering-types;

with Weight-Sensor-Manager, Location...anel-Manager, Control.Panel-Manager,
Floor-.Sensor-lanager, Motor-.Manager;

pragma elaborate (Weight-Sensor-Manager, Location.Panel-Manager,
Control-Panel-Manager, Floor..Sensor-Manager,

Motor-Manager);

package Elevator-.System..Aggregate is

package SET renames Standard-Engineering-types;

type Elevator-.Representation is record

The-Weight-Sensor Weight.SensorManager.WeightSensor-Type;

The-Location-.Panel Location-Panel-Manager.Location-Panel-Type;

The-Control-Panel Control-Panel-Manager.Control-..anel-Type;
The-.Floor-.Sensor Floor-.Sensor-Manager. Floor-Sensor-Type;

The-Miotor Motor-Manager. Motor-ype;
end record;

type Elevator-Type is array(SET.Elevator-ID-Type)
of Elevator-Representation;

Elevators :Elevator-Type;

end Elevator-System-Aggregate;

package body Elevator-System-Aggregate is

begin

for Current-.Elevator in SET.Elevator-ID-Type loop

Elevators(Current-Elevator) .The-.WeightSensor

Weight-Sensor-Manager.NewWeightSensor(Cirrent-Elevator);

Elevators(Current-.Elevator) .The-Location.Yanel :

Location-Panel-Manager.New-Location-Panel(Current-Elevator);

Elevators(Current-Elevator) .The-Control-Panel

A-31

Control-Panel-Manager.New-Control-Panel

(Elevator-ID => Current-.Elevator,

Control..Yanelnterrupt => SET.Elevator-Data-Array

(Current-Elevator) .Control-Panel-Interrupt);

Elevators (Current-Elevator) .The-Floor_.Sensor :

Floor-Sensor-.Manager.New..Floor-Sensor

(Elevator-ID => Current-Elevator,
Floor-Sensor-Interrupt => SET.Elevator-Data-Array

(Current-Elevator) .Floor-Sensor-Interrupt);

Elevators (Current..Elevator) .The-Motor :

Motor-Manager.New-Motor(Current-Elevator);

end loop;

end Elevator..System-Aggregate;

A.4.2 Scheduler-System-Aggregate.

with Scheduler-Manager;
pragma elaborate (Scheduler-Manager);

package Scheduler-System-.Aggregate is

Scheduler :constant Scheduler-Manager.Scheduler-Type

Scheduler-Manager.New-Scheduler;

end Scheduler-.Systew..Aggregate;

A.4.3 Flo or-Panel-Aggregate.

with Floor-Panel-Manager;
with Standard-Engineering-Types;
pragma elaborate (Floor-Panel-Manager);
package Floor-Panel.System-Aggregate is

package SET renames Standard-Engineering-types;

Floor-Panels :constant Floor-Paniel-.Manager.Floor-Panel-Type
Floor-Panel-.Manager. NewFloor-Panel

(Up-.Interrupt => SET.FloorPanelData.UpInterrupt,

A -32

Down-Interrupt => SET.FlooPanelData.DownInterrupt);

end FloorPanelSystemAggregate;

A.5 Connector/Event Procedures

A.5.1 Summons.

with StandardEngineeringTypes;

with SchedulerSystemAggregate;

with SchedulerManager;

use StandardEngineeringTypes;

procedure Summons(FromFloor in Floor-Type;

Desired-Direction in Direction-Type) is

package SSA renames SchedulerSystemAggregate;

package SM renames SchedulerManager;

begin

SM.ApplySummonsTo(ThisScheduler => SSA.Scheduler,

From-Floor => FromFloor,

Direction => Desired-Direction);

end Summons;

A.5.2 Arrives.

with StandardEngineeringTypes;

--System Level packages:
with ElevatorSystemAggregate;

with FloorPanelSystemAggregate;

--Object Level Packages:

with ControlPanelManager;
with Motor-Manager;
with FloorPanelManager;

use StandardEngineeringTypes;

procedure Arrives(ThisElevator : in Elevator_ID_Type;

Floor : in Floor-Type;

A-33

Direction : in Direction-Type) is

package ESA renames ElevatorSystemAggregate;

package FPSA renames FloorPanelSystemAggregate;

package CPM renames ControlPanelManager;

package MM renames Motor-Manager;

package FPM renames FloorPanelManager;

begin

MM.ApplyStopTo(ThisMotor => ESA.Elevators(ThisElevator).TheMotor);

CPM.ApplyLightOutTo

(ThisControl_Panel =>
ESA.Elevators(ThisElevator).TheControlPanel,

Floor => Floor);

FPM.ApplyLightOutTo (ThisFloorPanel => FPSA.FloorPanels,
Floor => Floor,

Direction => Direction);

end Arrives;

A.5.3 Proceed.

with StandardEngineeringTypes;

--System Level packages:

with ElevatorSystemAggregate;

--Object Level Packages:
with Motor-Manager;

with WeightSensorManager;

use StandardEngineeringTypes;

procedure Proceed (This-Elevator : in ElevatorIDType;

Direction : in Direction-Type) is

package ESA renames ElevatorSystemAggregate;

package WSM renames WeightSensorManager;

A-3.1

package MM renames Motor-Manager;

begin

loop

if WSM.ReturnWeightOKFrom
(ESA.Elevators(ThisElevator).TheWeightSensor) then

MM.ApplyGoTo

(This-Motor => ESA.Elevators(ThisElevator).TheMotor,

Direction => Direction);

exit;

else

delay 5.0;
end if;

end loop;

end Proceed;

A.5.4 Destination_-Requested.

with StandardEngineeringTypes;

--system level packages:

with SchedulerSystemAggregate;

--object level packages:

with SchedulerManager;

use StandardEngineeringTypes;

procedure DestinationRequested(ElevatorID : in ElevatorIDType;
To-Floor : in Floor-Type) is

package SSA renames SchedulerSystemAggregate;

package SM renames SchedulerManager;

begin
SM.ApplyDestinationRequestTo

(ThisScheduler => SSA.Scheduler,

A-35

Elevator => Elevator-ID,

Floor => To-Floor);

end Destination-Requested;

A.5.5 Floor-Approaching.

with Standard-Engineering-Types;
with Elevator-System-.Aggregate;

with Scheduler-System-.Aggregate;

with Location-Panel-Manager;

with Scheduler-Manager;
use Standard-.Engineering-Types;

procedure Floor-Approaching(This-Elevator in Elevator-ID.Jype;

Floor in Floor-Type) is

package ESA renames Elevator-.System-Aggregate;

package SSA renames Scheduler.System-Aggregate;

package LPM renames Location-Panel-Manager;
package SM renames Scheduler-Manager;

begin

LPM .Apply-UpdateLocationIndicator

(This-Location-Panel =>

ESA.Elevators(This-Elevator) .The-LocationPanel,

New-.Floor => Floor);

SM. Apply-Floor-Approaching

(This..Scheduler => SSA.Scheduler,
Floor => Floor,

Elevator => This_~Elevator);

end Floor-Approaching;

A-36

Appendix B. Ada Specifications for the Cruise Control Problem

B.1 Standard_-EngineeringTypes

with System;

package StandardEngineeringTypes is
--(for the Cruise Control System)

--This package serves two purposes:

-- 1. It contains type definitions for parameters that are used in the
-- Cruise Control control system. These parameters were mapped from

-- the Object-Mapping Table which mapped all the objects defined in
-- the analysis. Areas marked "PARAMETER AREA #X:" contain
-- parameters that were mapped from the analysis

-- 2. It configures the design for reusability. The areas marked:
-- "CONFIGURATION AREA #X:" contain data used to instantiate the

-- design. The parameters that can be instantiated are:

-- -The maximum speed expected of the vehicle.
-- -The maximum speed at which the Cruise Control can be used.

-- -The time interval at which the speed is checked and

-- updated.
-- -All the hardware interface values, including:

..-- Six interrupt vectors.

..-- Two I/O register addresses.

...-- 23 throttle control command values.

-- This means that the Cruise Control control software system can be
-- configured for different Cruise Control hardware systems by

-- instantiating these values.

.. .--CONFIGURATION AREA #1:

MaxVehicleSpeed : constant : 150; --Not included in analysis.
MaxCruiseSpeed : constant := 100; --To satisfy

--metarequirement of analysis.

Update-Interval : constant duration := 1.0;
--(seconds), this interval was not

--included in the analysis.

B-1

--PRAMTERAREA #1:

subtype Speed-.Type is integer range 0. .Max-.Vehicle-.Speed;

subtype InterruptNum-Type is System.Address;

subtype Register-.Address-Type is System.Address;

subtype Command-.ByteType is System.Address;

type Cruise-ontrol.Data-Type is record

--Interrupt Numbers:

Set-Button-Interrupt :Interrupt-Nun.Type;

On-Button-Interrupt Interr-upt-Num-.Type;

Off-.ButtonInterrupt :Interrupt-.NumnType;

Resume-Button-Interrupt :Interrupt-NunLType;

Accelerate-Button-Interrupt Interrupt-.Num-Type;

Brake-Pedal-Interrupt :Interrupt..Num-Type;

--Input/Output Registers:

Speed-SensorInput-Register : Register-.Address-.Type;

Throttle-Control-output-Register : Register-Address-Type;

--Throttle-.Control Commands:

Set-Throttle : Command-.Byte-.Type;

Release-Throttle : Command-Byte-Type;

No-Change : Comman-Byte-Type;

Decelerate-Increment-1 :Comman-ByteType;

Decelerate-Increment-2 :CommandByte-Type;

Decelerate-Increpient-3 : CormanByte-Type;

Decelerate-Increment-4 : Comxan-ByteType;

Decelerate-Increment-5 : Command-Byte-Type;

Decelerate-ncrement-6 : Command-Byte-Type;

Decelerate-.Increment-7 : Command-.Byte-Type;

Decelerate-Increment-8 : Command-Byte-Type;

Decelerate-.Increment-9 :Command-Byte-Type;

Decelerate-Increment-10 : Command-.Byte-Type;

Accelerate-Increment-1 : Command-Byte.Jype;

Accelerate-ncremlent-2 :Comnan-ByteType;

Accelerate-Increluent-3 : CommandByteType;

Accelerate-Incretnent-4 : Conmand.Byte-Type;

Accelerate-Increnent-5: CommandByte-Type;

Accelerate-Increment-6 : Comman-ByteType;

Accelerate-Incremert- : CommandByte-Type;

.AccelerateIncrement-8 : Command..Byte-Type;

Accelerate-Increment-9 : Comian-ByteType;

B-2

Acce'.erate-Increment-10 :Corn and-Byte-Typa;

end record;

Cruise-Control-Data :Cruise-Control-Data-Type;

end Standard-.Engineering-.Types;

package body Standard.Engineering-Types is

begin

--Configure the Cruise Control implementation by plugging in the

interrupt numbers, register addresses, and hardware commands:

--CNFIURAIONAREA #2:

--Interrupt Numbers:

Cruise-Control-Data.Set-Button-Interrupt 16#Bl#;

Cruise-Control-Data. 0n-Button-Interr-upt :-16#B2#;

Cruise..Control-Data. Off.Button-Interrupt :-16#B3#;

Cruise-Control-Data.Resume-Button-Interrupt :=16#B4#;

Cruise-Control-Data.Accelerate-.Button-Interrupt : 16#B5#;
Cruise-ControlData.Brake.Yedal-Interrupt :16#B6#;

--Input/Output Registers:
Cruise-Control-Data.Speed-Sensor-Input-Register :16#Al#;

Cruise-Control-Data.Throttle-Control.Output-Register : 16#A2#;

--Throttle-Control Commands:
Cruise-.Control-Data.Set..Throttle :-16#10#;

CruiseControl-Data.Release-Throttle 16#AA#;
--This one only needs

--to be different from
--the others.

Cruise-Control-Data.No-Change :-16#FF#;

Cruise-Control-.Data.DecelerateIncrement-1: 16#01#;

Cruise-Control-Data.Decelerate-Increment-2 16#02#;

Cruise-Control.Data.Decelerate-Increment-3 :16#03#;

Cruise-ControlData.Decelerate-Increment-4: 16#04#;

Cruise-Control-Data.Decelerate-Increment-5 16#05#;

B-3

CruiseControlData.DecelerateIncrement_6 16#06#;

CruiseControlData.DecelerateIncrement7 : 16#07#;

CruiseControlData.DecelerateIncrement_8 = 16#08#;

CruiseControlData.DecelerateIncrement_9 : 16#09#;

CruiseControlData.DecelerateIncrementO: 16#OA#;

CruiseControlData.AccelerateIncrement1 := 16#81#;

CruiseControlData.AccelerateIncrement-2 := 16#82#;

CruiseControlData.AccelerateIncrement_3 = 16#83#;

CruiseControlData.AccelerateIncrement_4 := 16#84#;

CruiseControl.Data.AccelerateIncrement_5 16#85#;

CruiseControlData.AccelerateIncrement_6 := 16#86#;
CruiseControlData.AccelerateIncrement7 : 16#87#;

CruiseControlData.AccelerateIncrement_8 16#88#;

CruiseControlData.AccelerateIncrement_9 16#89#;

CruiseControlData.AccelerateIncrementO: 16#8A#;

end StandardEngineeringTypes;

B.2 Cruise Control Object-Managers

B.2.1 ThrottleControlManager.

with StandardEngineeringTypes;

--with: No known withing is needed from the package body.

package ThrottleControlManager is

package SET renames StandardEngineeringTypes;

------------ ------- > OBJECT REQUIREMENTS <----------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure

"NewThrottleControl."

-- 2. Receives a call to set the throttle at the current position.

-- Source of stimulus: call to exported procedure:

.ApplySetTo."

'-,i

-- 3. Receives a call to change the throttle setting.

-- Source of stimulus: call to exported procedure:
"Apply.ChangeSettingTo."

-- 4. Receives a call to release the throttle.

-- Source of stimulus: call to exported procedure:

"ApplyReleaseTo."

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Loads values from the CruiseCont) .lData variable
- - in StandardEngineeringTypes to the corresponding
-- fields of the CruiseControlRepresentation.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to set the throttle at the current

-- position.

-- a. Internal Response:

-- i. Write Set output command to the

-- ThrottleControlOutputRegister.

-- ii. Delay for a short period (at least as long as the read
- - cycle of the hardware) and write the No-Change Command

-- into the ThrottleControlOutputRegister.

-- b. External Response:

-- i. none.

-- 3. Receives a call to change the throttle setting.

-- a. Internal Response:

-- i. Write the Decelerate/Accelerate command, associated with

-- incoming Change and Change-Amount parameters, to the

13-5

-- Throttle-Control.Output-Register.

-- ii. Delay for a short period (at least as long as the read
-- cycle of the hardware) and write the No-Change Command
-- into the Throttle-Control-Output-Register.

-- b. External Response:

-- i. none.

-- 4. Receives a call to release the throttle.
-- a. Internal Response:

-- i. Write the the Release command to the

-- Throttle-.Control-Output-Register.

-- b. Exernal Response:

-- i.none.

------- ----- > END OBJECT REQUIREMENTS <------------------------

--All the fields in the Throttle-Control-Representation.

--The state Holding/Released state of the hardware may be

--maintained if helpful.

------- ----- > OBJECT DEFINITION <------------------------------

type Throttle-Control.Type is private;

------- ----- > PARAMETERS/ATTRIBUTES <------------------------------

type Change-Type is (Deceleration, Acceleration);

subtype Change-Amount-Type is integer range 1._10;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New-ThrottleControl return Throttle-Control-Type;

B-6

procedure Apply-Set-To

(This..Throttle-Control :in Throttle..Control-Type);

procedure Apply-Change-Setting.Jo

(This-Throttle-Control :in Throttle..Control.Jype;

Change :in Change-.Type;

Change-Amount :in Change-Aount-Type);

procedure Apply-Release-To
(This.Throttle-Control: in Throttle-ontrol_Type);

private

type Throttle-Control-Representation is record

Throttle-Control-.Output-Register SET. Register-Address-Type;

Set-Throttle SET. Cornmand-.ByteType;

Release-Throttle SET. Commxand-Byte-Type;

No-Change SET.Comiand-Byte-.Type;

Decelerate-.Increment. 1 SET. Command-Byte-Type;

Decelerate-Increment-2 SET. Comxnand-Byte..Type;

Decelerate-Increment-3 SET. Comniand-Byte-.Type;

Decelerate-Increment-4 SET. Coinmand-Byte..Type;

Decelerate.Increment-.5 SET.Comniand-Byte..Type;

Decelerate-Increment-6 SET.ComxnandByte-Type;

Decelerate-ncrement-7 SET.Comznand.Byte-Type;

Decelerate-Increment-8 SET. Comxnand..Byte..Type;

Deceleratp-Increment-9 SET.CoimandByte-Type;

Deceleratelncrement-.10 SET. Command-Byte-Type;

Accelerate-Increment-1 SET. Cormand-Byte-Type;

Accelerate-Increment-2 SET. Comniand-Byte-Type;

Accelerate.Increment-3 SET.CommandByte.Type;

Accelerate-Increment-4 SET. Command-Byte.Jype;

Accelerate-Increment.5 SET.Gomxnand-Byte..Type;

Accelerate-Increment-6 SET. Commnand.Byte..Jype;

Accelerate-Increment-7 SET.ConuandByte-Type;

Accelerate-Increment-8 SET. Command-.Byte..Type;

Accelerate-Increment-9 SET.Cormand-Byte-Type;

Accelerate-Increment-10 SET.Conmand.Byte-.Type;

end record;

--The full definition may be moved to the package body

--after implementation of the body is complete.

type Throttle-Control.Type is access Throttle-Control-Representation;

13-7

--pointer to a ThrottleControlRepresentation

end ThrottleControlManager;

B.2.2 SpeedSensorManager.

with StandardEngineeringTypes;

--with: No known withing is needed from the package body.

package SpeedSensorManager is

package SET renames StandardEngineeringTypes;

----------------- > OBJECT REQUIREMENTS < ---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure

"NewSpeedSensor."

-- 2. Receives a call to return the current speed.

-- Source of stimulus: call to exported procedure:

"ReturnSpeedFrom."

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Loads values from the CruiseControlData variable in

-- StandardEngineeringTypes to the corresponding fields

-- of the CruiseControlRepesentation.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to return the current speed.

-- a. Internal Response:

B-8

-- i. Read the Speed-Sensor-Input-Register to determine the
-- speed.

-- ii. Convert from the hexadecimal speed integer to
-- Speed-.Type and return the value to the caller.

-- b. External Response:

-- i. none.

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > STATES MAINTAINED <------------------------------

-- All the fields in the Speed..Sensor-Representation.

------- ----- > OBJECT DEFINITION <------------------------------

type Speed..Sensor-Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

± unction New-Speed-Sensor return Speed-Sensor.Type;

function Return-Speed-From

(This-Speed-Sensor : in Speed-Sensor-Type) return SET.Speed-Type;

private

type Speed..$ensor-Representation is record
Speed-Sensor-Tnput.Register : SET.Register-Address-Type;

end record;

--The full definition may be moved to the package body

--after implementation of the body is complete.

B -9

type SpeedSensorType is access SpeedSensorRepresentation;
--pointer to a SpeedSensorRepresentation

end SpeedSensorManager;

B.2.3 Buttons-4anager.

with StandardEngineeringTypes;
with System; -- since this object accepts interrupts

--with : Turn-On, Set-Speed, Accelerate, TurnOff, Resume, Brake;
-- This object is an event initiator, it "must" with all these

-- connectors to pass messages in responses to the events. Move
-- these "with"s to the package body.

package Buttons-Manager is

pa-kage SET renames StandardEngineeringTypes;

-------------------- > OBJECT REQUIREMENTS <---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure

"New-Buttons."

-- 2. Receives an interrupt indicating that the On Button was

-- pressed.

-- Source of Stimulus : OnButtonInterrupt.

-- 3. Receives an interrupt indicating that the Off Button was

-- pressed.

-- Source of Stimulus : OffButtunInterrupt.

-- 4. Receives an interrupt indicating that the Set Button was

-- pressed.

-- Source of Stimulus : Set-ButtonInterrupt.

-- 5. Receives an interrupt indicating that the Resume Button was

-- pressed.

B-10

-- Source of Stimulus : ResumeButtonInterrupt.

-- 6. Receives an interrupt indicating that the Accelerate Button

-- was pressed.

-- Source of Stimulus : AccelerateButton.Interrupt.

-- 7. Receives an interrupt indicating that the Brake Pedal was

-- pressed.

-- Source of Stimulus : BrakePedalInterrupt.

-- RESPONSE SUMMARY:

..-- NOTE ON iNTERNAL DESIGN:
-- Additional tasks should be created to handle responses that

-- involve waiting for what may be a significant amount of time

-- for a connector to return. The reason is so the

-- Buttons-Representation task is available to receive important

-- interrupts like Brake-Pedal and Turn-Off.

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Use the six interrupt values in creating a new

-- instance of the task; it does this by assigning the
-- interrupt values to the Up/DownInterruptAddress
-- variables before creating the new instance.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives an interrupt indicating that the On Button was

-- pressed.

-- a. Internal Response:

-- i. None.

-- b. External Response:

11-11

-- i. Invoke the "Turn-On" Connector.

-- 3. Receives an interrupt indicating that the Off Button was

-- pressed.

-- a. Internal Response:

-- i. None.

-- b. External Response:

-- i. Invoke the "Turn-Off" Conne-,.r.

-- 4. Receives an interrupt indi-aLing that the Set Button was

-- pressed.

-- a. Internal Response:

-- i. None.

-- b. External Response:

-- i. Invoke the "Set-Speed" Connector.

-- 5. Receives an interrupt indicating that the Resume Button was

-- pressed.

-- a. Internal Response:

-- i. None.

-- b. External Response:

-- i. Invoke the "Resume" Connector.

-- 6. Receives an interrupt indicating that the Accelerate Button

-- was pressed.

-- a. Internal Response:

-- i. None.

-- b. External Response:

-- i. Invoke the "Accelerate" Connector.

-- 7. Receives an irterrupt indicating that the Brake Pedal was

-- pressed.

13-12

-- a. Internal Response:

-- i. None.

-- b. External Response:

-- i. Invoke the "Brake" Connector.

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > OBJECT DEFINITION <------------------------------

type Buttons-.Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New-.Buttons
(On-ButtonInterrupt :SET.Interrupt-Num-Type;
Off-Button-Interrupt :SET. InterruptNum-.Type;
Set.Button-Interrupt :SET. Interrupt-Num.Jype;

Resunie.Button-Interrupt :SET. Interrupt.Nuin.Jype;

Accelerate..ButtonInterrupt :SET. Interrupt-.Nuin.Type;

Brake-Pedal-Interrupt :SET. Interrupt-Num-Type)

return Buttons-.Type;

private

On-Button-nterrupt.Nun SET. Interrupt-Numnjype;

Off-Button-Interrupt-Num :SET. Interrupt-Numnjype;

Set-Button-Interrupt-Num :SET. Interrupt-Num-Type;

Resume.ButtonInterrupt-Num SET. Interrupt-Num.Type;

Accelerate-Button-Interrupt-Nui SET.Interrupt-Nun.Jype;

Brake..Pedal-Interrupt.Num :SET.Interrupt-Num-Type;

task type Buttons-.Representation i,3

entry Initialize;

B13:

entry On-Interrupt;
entry Off-Interrupt;
entry Set-Interrupt;

entry Resume-Interrupt;

entry Accelerate-Interrupt;

entry Brake-Interrupt;

for On-Interrupt use at OnButtonInterruptNum;
for Off-Interrupt use at OffButtonInterruptNum;

for Set-Interrupt use at Set.ButtonInterruptNum;

for Resume-Interrupt use at ResumeButtonInterruptNum;
for Accelerate-Interrupt use at AccelerateButtonInterruptNum;

for Brake-Interrupt use at BrakePedalInterruptNum;
end Buttons-Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type Buttons-Type is access Buttons-Representation;

--pointer to a Buttons-Representation

end Buttons-Manager;

B.2.4 SystemStatesManager.

with StandardEngineeringTypes;

--with: Nothing is known to need withing from the package body.

package SystemStatesManager is

package SET renames StandardEngineeringTypes;

......- .> OBJECT REQUIREMENTS < ---------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: function NewSystemStates.

-- 2. Receives a call to save the On state as "on."

-- Source of stimulus: procedure ApplyTurnOnTo.

-- 3. Receives a call to save the engaged state as "engaged."

B-14

-- Source of stimulus: procedure ApplyEngageTo.

-- Receives a call to Save the Desired Speed.

-- Source of stimulus: procedure ApplyDesiredSpeedTo.

-- Receives a call to save the engaged state as "disengaged."

-- Source of stimulus: procedure ApplyDisengageTo.

-- Receives a call to save the On state as "off."

-- Source of stimulus: procedure ApplyTurnOffTo.

-- Receives a call to return the current On state.

-- Source of stimulus: function ReturnOnStateFrom.

-- Receives a call to return the current Engaged state.

-- Source of stimulus: function ReturnEngagedStateFrom.

-- Receives a call to return the current Desired Speed.

-- Source of stimulus: function ReturnDesiredSpeedFrom.

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Returns an instance of the object.

-- b. External Response:

-- i. none.

-- 2. Receives a call to save the On state as "on."

-- a. Internal Response:

-- i. Set On-State to true.

-- b. External Response:

-- i. none.

-- 3. Receives a call to save the engaged state as "engaged."

13-15

-- a. Internal Response:

-- i. Set Engaged-State to true.

-- b. External Response:

-- i. none.

-- 4. Receives a call to Save the Desired Speed.

-- a. Internal Response:

-- i. Assign Desired-Speed to Speed-State.

-- b. External Response:

-- i. none.

-- 5. Receives a call to save the engaged state as "disengaged."

-- a. Internal Response:

-- i. Set Engaged-State to false.

-- b. External Response:

-- i. none.

-- 6. Receives a call to save the On state as "off."

-- a. Internal Response:

-- i. Set On-State to false.

-- b. External Response:

-- i. none.

-- 7. Receives a call to return the current On state.

-- a. Internal Response:

-- i. Return On-State.

-- b. External Response:

-- i. none.

-- 8. Receives a call to return the current Engaged state.

-- a. Internal Response:

-- i. Return Engaged-State.

-- b. External Response:

-- i. none.

-- 9. Receives a call to return the current Desired Speed.

-- a. Internal Response:

B-16

-- i. Return Speed-State.

-- b. External Response:

-- a.none.

------- ----- > END OBJECT REQUIREMENTS <------------------------

------- ----- > STATES MAINTAINED <------------------------------

-- All the fields in the System-States-Representation.

------- ----- > OBJECT DEFINITION <------------------------------

type System-.States-.Type is private;

------- ----- > EXPORTED OPERATIONS <------------------------------

function New-System-.States return System-States-Type;

procedure Apply-.Turn-.On-.To(This-.System-.States :in System-States.Type);

procedure Apply-Engage-To (This.System..States :in System-StatesType);

procedure Apply-Desired..Speed-To

(This-.System-States :in System.States-Type;

Desired-Speed :in SET.Speed-Type);

procedure Apply-Disengage-To

(This-System.States :in System-States-Type);

procedure Apply-Turn_Off_.To(This.System.States :in System-States-Type);

function Return-On-.State-From
(This..System-States : in System-States1'ype) return boolean;

function Return-Engaged-State-From

(This-System-States : in System-States-Type) return boolean;

function Return-Desired.Speed.From

B-17

(This.System-States :in System-States-Type)

return SET.Speed-Type;

private

--if no interrupts:
type System-States-Representation is record

On-State :boolean :false;

Engaged-State :boolean false;
Speed-.State :SET.Speed.Jype;

end record;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type System-States-Type is access System-States-Representation;
--pointer to a System-States.Representation

end System-States.Manager;

B.2.5 Tiner-Manager.

with Standard--ngineering-Types;

--with: Update; --connector, move this to package body

package Timner-Manager is

package SET renames Standard-Engineering.jypes;

-------- -- > OBJECT REQUIREMENTS <------------------------------

-- STIMULUS SUMMARY:

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimijlus: function New-imer.

-- 2. Time to Update.

-- Source of Stimulus: The elapse of the time interval
defined by Update-Interval in

Standard-Engineering-Types.

-- RESPONSE SUMMARY:

13-18

-- 1. Receives a call to create a new instance of the object.

-- a. Internal Response:

-- i. Initialize the task using the Time-Interval
-- parameter passed in with the Initialize entry.

-- ii. Returns an instance of the object.

-- 2. Time to Update.

-- a. Internal Response:

-- i. Reset the interval timer.

-- b. External Response:

-- i. Invoke the "Update" Connector.

-------- - > END OBJECT REQUIREMENTS < ----------------------

---- - - > OBJECT DEFINITION < ---------------------------

type Timer-Type is private;

-------------------- > EXPORTED OPERATIONS <----------------------------

function New-Timer return Timer-Type;

private

task type TimerRepiesentation is
entry Initialize(TimeInterval : in duration);

end Timer-Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type Timer-Type is access Timer-Representation;

B_-19

--pointer to a Timer-Representation

end Timer-Manager;

B.3 Cruise-Control Aggregate Package

B.3.1 Cruise-Control-System-Aggregate.

with Standard-Engineering-types;

with Throttle-Control-Manager, Speed-Sensor-.Manager,
System-States-Manager, Buttons-Manager, Timer-Manager;

pragma elaborate (Throttle-Control-Manager, Speed-Sensor-Manager,
System-States.Manager, Buttons-Manager,

Timer-Manager);

package Cruise-Control-System-Aggregate is

package SET renames Standard-Engineering-types;

type Cruise Cntrol-.Representation is record
The-Throttle.Control Throttle-Control-Manager.Throttle-Control-Type;
The-Speed-Sensor Speed-Sensor-Manager.Speed-Sensor-Type;
The-System-States Systeni.States-Manager.System..tates-Type;
The-Buttons Buttons-Manager.Buttons-Type;
The-Timer Timer-Manager .Timer-Type;

end record;

Cruise-Control :Cruise-Control-Representation;

end Cruise..Control-System.Aggregate;

package Indv (-',;iz2Control-.System-Aggregate is

begin

Cruise-Control .The-Throttle-.Control
Throttle..Control-Manager.New-.Throttle-Control;

Cruise-Control.The-Speed-Sensor :

Speed-Sensor-Manager.New-Speed-Sensor;

Cruise-Control.The-System-States :

System-StatesManager.New-SystemStates;

B-20

Cruise..Control .The-Buttons :=Buttons..Manager.New-Buttons

(Un-Button-Interrupt =

SET. Cruise-.Control-Data. On-Button..Interrupt,

Off-.Button.Interrupt =

SET. Cruise-Control-Data. Off..Button..Interrupt,

Set-Button-Interrupt =

SET. Cruise.Control-Data. Set..Button-lnterrupt,

ResueButton-Interrupt =

SET. Cruise-.Control-Data .Resume.Button-.Interrupt,

Accelerate-Button-.Interrupt =>

SET.Crise-ControlData.Accelerate.Button.Jnterrupt,

Brake-Pedal-.Interrupt =

SET.Cruise-Control-Data.Brake-Pedalnterrupt);

Cruise..Control .The-Timer :=Timer-Manager.New-Timer;

end Cruise-ControlSysten.Aggregate;

BA4 Connector/Event Procedures

B.4.1 Turn-On.

with System-States-Manager;
with Cruise-Control-Aggregate;

procedure Turn-On is

package CCA renames Cruise-Control-Aggregate;

package SSM renames System-States-Manager;

begin

SSM.Apply.TurnOn-To(CCA.Cruise-Control.The-SystemStates);

end Turn-On;

B.4.2 Set-Speed.

with System..States-Manager;

with Cruise-Control..Aggregate;

with Throttle..Control..Manager;
with Speed..Sensor..Nanager;

procedure Set-Speed is

package GCA renames Cruise-Controi..Aggregate;

package SSM renames System-.States..Manager;

B3-21

package TCM renames Throttle..Control-Manager;
package SS renames Speed..Sensor-Manager;

begin

--If the cruise control is turned on then
--engage it, set the throttle, get the current

--Speed and save it.

if SSM.Return-On-.StateFrom(CCA.Cruise-Control.The.System-States) then

SSM .Apply..Engage.To (CCA .Cruise-Control .The..Systern.States);

TCM.Apply-Set-To(CCA.Cruise-Control .The-Throttle-Control);

SSM .Apply-DesiredSpeed-To

(This-System-.States => CCA.Cmise-Control.The-ystem.States,

Desired-.Speed =

SS .Return-Speed.Yrom(CCA .Gruise-Control .The.Speed-Sensor));

end if;

end SetSpeed;

B.4.3 Update.

with System-.States-Manager;

with Cruise-.Control-Aggregate;

with Throttle-Control-Yanager;

with Speed-Sensor.Manager;

with Standard..Engineering-Types;

procedure Update is

package CCA renames Gruise-Control-Aggregate;

package SSM renames System..States-Manager;

package TCM renames Throttle-Control-Manager;

package SS renames Speed-.Sensor..Manager;
package SET renames Standard-Engineering-.Types;

Current-Speed :SET.Speed-Type :

SS .Return.Speed-From(CCA .Cruise-Control .The-Speed-Sensor);

Desired-.Speed :SET.Speed§IType :

SSM .Return..Desired.Speed-.From(CCA .Cruise-Control .The-System.States);

Speed-Difference :SET.Speed..Jype;

beg ir,

--If the cruise control is engaged and the current

B3-22

--speed doesn't equal desired speed then adjust
--the speed, delay, and check it again. Give up

--after about 10 seconds.

--NOTE: The Speed-Difference passed to
--ThrottleControlManager must be greater than 0
--and less than 11.

for i in 1..6 loop

exit when SSM.eturnEngagedStateFrom

(CCA.CruiseControl.TheSystemStates) = false;

if Desired-Speed = Current-Speed then

exit;
elsif Desired-Speed < Current-Speed then --too fast

Speed-Difference := Current-Speed - Desired-Speed;

if Speed-Difference > 10 then

Speed-Difference := 10;
end if;

TCM.ApplyChangeSettingTo

(ThisThrottleControl =>

CCA.CruiseControl.TheThrottleControl,

Change => TCM.Deceleration,

ChangeAmount => Speed-Difference);

else --too slow
Speed-Difference := Desired-Speed - Current-Speed;

if Speed-Difference > 10 then

Speed-Difference := 10;

end if;

TCM.ApplyChangeSettingTo

(ThisThrottleControl =>
CCA.CruiseControl.TheThrottleControl,

Change => TCM.Acceleration,

Change-Amount => Speed-Difference);

end if;

if i /= 6 then
delay SET.UpdateInterval; --seconds

Current.Spied :=
SS.ReturnSpeedFrom(CCA.CruiseControl.TheSpeedSensor);

B-23

end if;

end loop;

end Update;

B.4.4 Brake.

with System-States..Yanager;
with Throttle-Control-Manager;

with Cruise-Control-Aggregate;
procedure Brake is

package CCA renames Cruise.Control-Aggregate;
package SSM renames System..States..Manager;
package TCM renames Throttle-Control-Manager;

begin

TCM.Apply-Release..To(CCA.Cruise-.Control.The-Throttle-Control);

SSM.Apply-Disengage-To(CCA.Cruise-Control .The.System..States);
end Brake;

B.4.5 Resumne.

with System-States.Manager;
with Cruise.Control-Aggregate;
procedure Resume is

package CCA renames Cruise-Control-Aggregate;
package SSM renames Systern.States-Manager;

begin
SSM.Apply.Engage..To(CCA.Cruise-Control .The-System-States);

end Resume;

B.4.6 Accelerate.

with System..States-Manager;
with Cruise.Control-Aggregate;

with Throttle-Control-Manager;

procedure Accelerate is

13-24

package CCA renames Cruise-Control-Aggregate;

package SSM renames System..$tates-Manager;

package TCM renames Throttle-Control-Manager;

begin

if SSM.Return- ngaged-St ate-From
(CCA.Cruise-Control .The-System-.States) then

TCM.Apply-Change-Setting-To

(This-Throttle-Control => CCA.CruiseControl.The-Throttle-Control,

Change => TCM.Acceleration,

Change-Amount => 1);
end if;

end Accelerate;

B.4.7 Turn-Off.

with Systein.States-Manager;
with Cruise-.Control-Aggregate;
with Throttle-Control-Manager;
procedure Turn-Off is

package CCA renames Cruise-Control-Aggregate;

package SSM renames System..States-Manager;

package TCM renames Throttle-ControlManager;

begin

TCM.Apply-.Release-To (CCA.Cruise-Control.The-Throttle-Control);
SSM.Apply-.Disengage-.To(CCA.CruiseControl.The-System.States);

SSM.Apply-Turn-flffjo (CCA.CruiseControl.TheSystem-States);

end Turn-Off;

B-25

Appendix C. Ada Package Bodies for Simulation Implementation

of the Elevator Problem

This appendix contains the implementation of the package bodies from the

elevator design problem in Chapter 4 and Appendix A. This implementation is dis-

cussed in Section 4.6. Not included are the main driver and the simulation screen

driver which were developed for the purpose of simulating the elevator controller on

a personal computer.

The simulator works as follows: The simulation driver gets keyboard inputs

from the operator, interprets them, and calls the appropriate object manager. This

simulates the receiving of interrupts caused by the pushing of elevator summons and

destination buttons. The object managers had to be modified somewhat to export

operations to receive stimulus in this manner. The simulation screen driver draws a

picture of the elevators on the screen and exports two kinds of suffered operations:

an operation to move one of the elevators up and down, and operations to turn the

butto lights on and off.

C.1 Floor-PanelManager.

with Summons, ElevatorScreenControl;

package body FloorPanelManager is

package ESC renames ElevatorScreenControl;
use StandardEngineeringTypes;

-------------------- > EXPORTED OPERATIONS <---------------------------

task body FloorPanelRepresentation is

Local-Floor SET.FloorType;

Local-Direction SET.DirectionType;

begin

C-1

loop

select

accept UpInterrupt(FromFloor : in SET.FloorType) do

Local-Floor := From-Floor;

end Up-Interrupt;

--Can't have a up summons from the top floor:

if not (LocalFloor = SET.FloorType'last) then
Summons(LocalFloor,Up);

ESC.ChangeFloorPanel.LightTo(On, Local-Floor, Up);

end if;

or
accept DownInterrupt(FromFloor : in SET.FloorType) do

Local-Floor := From-Floor;

end Down-Interrupt;

--Can't have a down summons from the bottom floor:

if not (Local-Floor = SET.FloorType'first) then

Summons(LocalFloor,Down);
ESC.ChangeFloorPanel_-LightTo(On, Local-Floor, Down);

end if;

or

accept LightOut(Floor : in SET.FloorType;

Direction : in SET.DirectionType) do

Local-Floor := Floor;

Local-Direction Direction;

end Light-Out;

ESC.ChangeFloorPanelLightTo(Off, Local-Floor,

Local-Direction);

end select;

end loop;

end FloorPanelRepresentation;

function NewFloorPanel return FloorPanelType is

Floor-Panel : FloorPanelType;

C-2

begin
Floor-Panel := new Floor-.PaneJJ.Representation;
return Floor-PYanel;

end NewFloor-Panel;

procedure Apply-Light-Out-o(This.Floor-Panel: in Floor-.Panel-Type;
Floor :in SET.Floor-Type;

Direction :in SET.Direction-Type) is

begin

if Direction = SET.Up then

--There is no up summons light at the top floor:

if Floor /= SET.Floor-.Type'last then

This-Floor-Panel.Light-Out(Floor,SET.Up);

end if;

else --down

--There is no down summons light at the bottom floor:

if Floor /= SET.Floor-Type'first then

This-Floor-Panel.Light-Out(Floor,SET.Down);

end if;

end if;

end Apply.Light-Out-To;

procedure Summons(This-Floor-Panel :in Floor-.Panel-.Type;
Floor :in SET.Floor-Type;

Direction :in SET.Direction-Type) is

begin

if Direction = up then

This-Floor-Panel.Up-Interrupt(Floor);

else
This-Floor-.Panel .Down-Interrupt (Floor);

end if;

C-3

end Summons;

end Floor-Panel-Manager;

C.2 WeighL-Sensor-Manager.

package body Wight-Sensor-Manager is

- - - - - - - --> EXPORTED OPERATIONS <- - - - - - - - - - - - - -

function New-Weight-Sensor
(Elevator-ID :SET.Eleiator-ID-Type) return Weight-Sensor-Type is

Weight-Sensor Weight-S.ensor-Type;

begin

Weight-Sensor :=new Weight-Sensor-Representation;

return Weight-Sensor;

end New-Weight-Sensor;

function Return-WeightOK-From

(This-Weight..Sensor :Weight-.Sensor-Type) return boolean is

begin
--Dummy routine for this simulation:

return true;

end Return..Weight-.OK-From;

end Weight-Sensor-Manager;

C.3 Scheduler-vlanager.

with Arrives, Proceed;
package body Scheduler-Manager is

C-4

use Standard.Engineering-Types;

------- ----- > OBJECT DEFINITION <------------------------------

type Floor-Stops is array (SET.Floor-Type) of boolean;

type Schedule-Record is record

Next-Stop SET.Floor-Type SET.Floor-Type'first;

Current-Floor :SET.Floor-Type SET.Floor-Type'first;

Direction SET.Direction-Type := SET.Parked;

Motor-On boolean :~false;

Boarding iboolean false;

end record;

type Elevator-Array is array(l. .SET.Elevator-ID-ype'Last) of

Schedule-Record;

type Sunmons-Waiting-Record is record

Waiting-Up : boolean :~false;
Waiting-Down :boolean false;

end record;

type Floor.Suinmons..Array is array (SET.ElevatorID-ype) of

Summons-Waiting-Record;

type Sumxnons-Waiting-Array is array (SET.Floor-.Type) of

Floor-.Suxnmons..Array;

type Destination-Waiting-Array is array (SET.ElevatorID-ype) of

Floor-Stops;

--Finally, the Scheduler representation:

type Scheduler-Representation is record

Schedule ElevatorArray;

Waiting-Summons :Summons-Waiting.Aridy;

Waiting-Destination :DestinationWaiting-Array;

end record;

------------ > LOCAL OPERATIONS <------------------------------

--(not visible in package specification)

--This routine sets the "Next-Stop" and

C- 5

--1Dirctin"fields of the Scheduler to

--set it up for its next action.

procedure Set-Next(This..Scheduler in Scheduler-Type;

Elevator in SET.Elevator-ID-Type) is

Current-Direction : SET.Direction.Type :

This-3cheduler.Schedule(Elevator) .Direction;

Current-Floor :SET.Floor-Type

This-Scheduler. Schedule(Elevator) .Current .jloor;

Floor-Set :boolean :=false;

procedure Search.Yp is

--Search up from the current floor, the next destination

--found or summons going in the up direction becomes the

--next floor, if none are found we search for a summons

--going down starting at the top floor:

begin

for i in Current-.Floor + 1. .SET.Floor-.Type'last loop

if (This-Scheduler.Waiting-.Destination(Elevator)(i) = true) or else

(This-Scheduler.Waiting-.Summons(i) (Elevator) .Waiting-Up = true) then

This-Schedu-er.Schedule(Elevator) .Next-Stop :;

This-Seheduler.Schedule(Elevator) .Direction :SET.Up;

FloorSet := true;

exit;

end if;

end loop;

if not Floor-Set then

for i in reverse Current-Floor + 1. .SET.Floor-Type'last loop

if (This-Sclheduler.Waiting-Summons(i) (Elevator).
Waiting-Down = true) then

This..Scheduler.Schedule(Elevator) .Next_.Stop i;

This-Scheduler.Scheduie(Elevator) .Direction SET.Up;

FloorSet := true;

exit;

end if;

end loop;

end if;

C-6

end SearchUp;

procedure Search-Down is

--Search Down from the current floor, the next destination
--found or Summons going down the down direction becomes the

--next floor, if none are found we search for a summons
--going up starting at the bottom floor:

begin
for i in reverse SET.FloorType'first..CurrentFloor - I loop

if (ThisScheduler.WaitingDestination(Elevator)(i) = true) or else

(ThisScheduler.WaitingSummons(i)(Elevator).

Waiting-Down = true) then
ThisScheduler.Schedule(Elevator).NextStop :i;
ThisScheduler.Schedule(Elevator).Direction : SET.Down;

Floor-Set := true;

exit;
end if;

end loop;

if not Floor-Set then
for i in SET.FloorType'first..CurrentFloor - 1 loop

if (ThisScheduler.WaitingSummons(i)(Elevator).

Waiting-Up = true) then
ThisScheduler.Schedule(Elevator).NextStop :i;

ThisScheduler.Schedule(Elevator).Direction : SET.Down;

Floor-Set := true;

exit;
end if;

end loop;

end if;

end Search-Down;

begin

--Always catch all scheduled floors in the current

--direction first. Park the elovator if there are
--no more floors scheduled for it:

if Current-Direction = SET.Down then

Search-Down;

C-7

if not Floor-.Set then

Search-.UP;

end if;

if not Floor-Set .nen

This-Scheduler.Schedule(Elevator) .Direction SET.Parked;

end if;

else --Currunt-Direction =SET.Up or SET.Parked

Search-Up;

if not Floor-Set then

Search-Down;

end if;

if not Floor-~Set then

This-Scheduler.Schedule(Elevator) .Direction SET.Parked;

end if;

end if;

end Set-Next;

------------ > EXPORTED OPERATIONS <------------------------------

function New-Scheduler return Scheduler-Type is

Local-Scheduler Scheduler-Type;

begin

Local-Scheduler new Scheduler-Representation;

return Local-.Scheduler;

end New.Scheduler;

procedure Apply-Surnmons-To(This-Scheduler in Scheduler-Type;

From-Floor in SET.Floor-Type;

Direction in SET.Direction-Type) is

--This routine decides which elevator to schedule for

--the summons, and sends it on its way if it is not

-- being used:

C-8

Number-Candidates : integer := 0;

type This-Candidate is record

Candidate : boolean :z false;

Distance : integer 2000;
end record;

Closest : integer : 2000;

Closest-One : SET.ElevatorIDType;

type Candidate-List is array(

SET.ElevatorIDType) of This-Candidate;

Candidates : Candidate-List;

Last-Direction : SET.DirectionType;
Idle-Elevator boolean := false;

begin

--check for parked elevators at this floor:

for i in reverse SET.ElevatorIDType loop

if (ThisScheduler.Schedule(i).Direction = SET.Parked) and then

(This_-Scheduler.Schedule(i) .CurrentFloor = From-Floor) then
Idle-Elevator := true;

Closest-One := i;

exit;

end if;

end loop;

--check for parked elevators:

if not Idle-Elevator then

for i in reverse SET.ElevatorIDType loop

if ThisScheduler.Schedule(i).Direction = SET.Parked then

Idle-Elevator := true;

Closest-One := i;

exit;

end if;

end loop;

end if;

--Since all the elevators are being used,
--schedule one using heuristics of trying to

--find the closest one going in the right

C-9

--direction:

if not Idle-.Elevator then

--Determine how far each elevator is from the
--floor where someone is waiting:

for i in SET.Elevator-ID-.Type loop
Candidates(i) .distance :

This-.Scheduler.Schedule(i) .Current-.Floor - From-Floor;

end loop;

--Establish candidate elevators to go answer

-- the summons as those going toward the summons
-- floor:

for i in SET.Elevator-1D-Type loop
if (This.Scheduler.Schedule(i).Direction = SET.Up) and

Candidates(i).distance <= 0 then
Candidates(i).Candidate := true;

Numnber-Candidates := Number-.Candidates + 1;
elsif (This-.Scheduler.Schedule(i).Direction SET.Down) and

Candidates(i).distarce >= 0 then
Candidates(i).Candidate := true;

Number-Candidates := NumberCandidates + 1;

elsif This-Scheduler.Schedule(i).Direction =SET.Parked then

Candidates(i).Candidate := true;

Numnber-Candidates := Number-Candidates + 1;
end if;

end loop;

--If no candidates then send the closest
--elevator.

if Numnber-Candidates = 0 then

for i in SET.Elevator-ID-.Type loop

if abs(Candidates(i).distance) < Closest then

Closest-one :=i
Closest := Candidates(i).distance;

end if;

end loop;

c-i10

--If one candidate then send it:

elsif Numnber-.Candidates = 1 then

for i in SET.Elevator-ID-.Type loop
if Candidates(i).Candidate = true then

ClosestiOne :=i
exit;

end if;

end loop;

--If more that one candidate then send the
--closest of these:

else --more than one candidate

for i in SET.Elevator-ID-Type loop
if (Candidates(i).Candidate =true) and then

(abs(Candidates(i).distance)) <= Closest then

Closest-.one :=i
Closest := Candidates(i).distance;

end if;

end loop;

end if;

end if;

--An elevator is selected so now we need to
--schedule it. Assign the summons to the summons

--table. If the assigned elevator is already at

--the right floor and parked, then don't schedule
--it, just call the connector "Arrives."

if (From-.Floor =This-.Scheduler.Schedule(Closest.One) .Curreyt-Floor)

and then

(This..$cheduler.Schedule(Closest-One) .Direction = parked) then

Arrives(Closest,From-.Floor, Direction);
This-.Scheduler.Schedule(Closest-One) .Motor-On := false;

else --schedule summons and call elevator if not being used:

if Direction = SET.Up then

This-Scheduler .Waiting-.Summons (FrcmFloor)

C-li

(ClosestOne).WaitingUp := true;

else --down

ThisScheduler.WaitingSummons(FromFloor)
(ClosestOne).WaitingDown := true;

end if;

--Set the elevator for next stop and direction:

Last-Direction := ThisScheduler.Schedule(ClosestOne).Direction;

SetNext(Thischeduler,ClosestOne);

--If the motor is off and it's not stopped for

--boarding then dispatch the elevator:

if (ThisScheduler.Schedule(ClosestOne).MotorOn = false) and then
(ThisScheduler.Schedule(ClosestOne).Eoarding = false) then

Proceed(ClosestOne,

ThisScheduler.Schedule(ClosestOne).Direction);

ThisScheduler.Schedule(ClosestOne).MotorOn := true;

end if;

end if;

end ApplySummonsTo;

procedure ApplyDestinationRequestTo
(ThisScheduler : in SchedulerType;

Elevator in SET.ElevatorIDType;

Floor : in SET.FloorType) is

begin

ThisScheduler.WaitingDestination(Elevator)(Floor) := true;

--Set the elevator for next stop and direction:

Set_Next(ThisScheduler,Elevator);

C-12

--If the motor is off and it's not stopped for

--boarding then dispatch the elevator:

if (This-.Scheduler.Schedule(Elevator).Motor-On = false) and then

(This-.Scheduler.Schedule(Elevator) .Boarding = false) then
Proceed (Elevator,

This-.Scheduler.Schedule(Elevator) .Direction);
This-.Scheduler.Schedule(Elevator) .Motor-.On := true;

end if;

end Apply-Destination-.Request-To;

procedure Apply-Floor.Approaching

(This-Scheduler :in Scheduler-Type;

Floor :in SET.Floor-Type;

Elevator in SET.Elevator-ID-Type) is

Summons-Direction :SET.Direction-Type;
Suxmmons-Waiting-jUp :boolean :=This-Scheduler.Waiting-Summons(Floor)

(Elevator) .Wait ing-Up;
Suimons-Waiting-Down : boolean := This-Scheduler.

Wait ing.Summons (Floor)

(Elevator) .Waiting-.Down;

begin

This.Scheduler.Schedule(Elevator) .Current-Floor := Floor;

--Stop if scheduled to do so:
if This-Scheduler.Schedule(Elevator).Next.Stop = Floor then

--set things up for the next stop:
Set_.Next (ThisScheduler,Elevator);

Summons-Direction := This-.Scheduler.Schedule (Elevator) .Direction;

--Clear schedule of appropriate summons and

--destinations. Want to catch at least one

--summons if one exist no matter which way
--we came from. Look from the direction we

--came from first:

if Summons-.Direction = Down then

if Summons-Waiting-Down then

C- 13

This-Scheduler .Waiting-Summons (Floor)

(Elevator).Waiting-Down :=false;

Summons-Direction := Down;

Summons-.Waiting-.Down :=false;

elsif Summons-Waiting-Up then

This-Scheduler .Waiting-Summons (Floor)

(Elevator) .Waiting-Up :false;

Summons-Direction Up;

Summons-WaitingJUp false;

end if;

else

if SumxonsWaiting-Up then
This-Scheduler. Waiting-Summons (Floor)

(Elevator).Waiting-Up false;

Summnons-Direction Up;

Summons-Waiting-Up :false;

elsif Sumons.Waiting-Down then

This-Scheduler. Waiting-Summons (Floor)

(Elevator) .Waiting-Down :=false;

Summons-Direction :=Down;

Summons-Waiting-Down :=false;

end if;

end if;
--clear destination request:

This-Scheduler.Waiting-Destination(Elevator) (Floor) := false;

--Stop the elevator:

Arrives(Elevator,Floor, Summons-Direction);

This-Scheduler.Schedule(Elevator) .Boarding true;

This-.Scheduler.Schedule(Elevator) .Motor-.On :false;

--Waiting for boarding if trips to more

--floors are pending:

if This-Scheduler. Schedule

(Elevator) .Direction /= SET.Parked then

delay 6.0; --so passengers can board before departure

end if;

--Reset for the next floor in case new requests

C-14

--were added to the schedule during boarding.

--Have the elevator continue now to the next

--stop if requests are pending:

Set-.Next(This.Scheduler,Elevator);

if This-.Scheduler.Schedule

(Elevator) .Direction /= SET.Parked then

Proceed (Elevator,

This..Scheduler.Schedule(Elevator) .Direction);

This-.Scheduler.Schedule (Elevator) .Motor-.On := true;

end if;

This.Scheduler.Schedule(Elevator) .Boarding := false;

end if;

end Apply-Floor-Approaching;

end Scheduler-Manager;

C.4 Lo cation -Panel-Manager.

with Elevator-Screen-Control;
package body Location-Panel-Manager is

package ESC renames Elevator-Screen-.Control;
use Standard-Engineering-Types;

------------- > EXPORTED OPERATIONS <------------------------------

function New.LocationPanel(Elevator-ID : SET.Elevator-.ID-Type)
return Location-Panel-Type is

Local-Loc-Panel :Location-Panel.Type;
begin

Local-Loc-Panel :new Location-Panel-Representation;
Local-Loc-Panel.Elevator-ID := Elevator-.ID;
Local-.Loc-.Panel .Current-Floor..jndicator-Lit:

SET. Floor-Type 'first;

return Local-Loc-.Panel;

..nd NewLocation-Panel;

C-15

procedure Apply.Update-Location-Indicator
(This_.Location-.Panel in Location-anel-.Type;

New-FYloor in SET.Floor-.Type) is

Move-Direction :SET.Direction-.Type;

begin

if New-Floor > This-Location-Panel.Current-Floor-Indicator-Lit then

Move-Direction :=Up;

elsif New-Floor < This-Location-Panel.Current-Floor-Indicator-Lit then

Move-Direction := Down;

else

return; --nowhere to move;

end if;

This-.LocationPanel.Current-Floor-Indicator.Lit : = New-Floor;

--Call the elevator simulation screen telling

--it to move the elevator:

ESC.Move-Elevator (Direction => Move-Direction,

Elevator-ID => This-Location-Panel.Elevator-ID);

end Apply.AUpdate-Location.Indicator;

end Location..Panel-Manager;

C.5 Control-Panel-Manager.

with Destination-Requested;

with Elevator-Screen.Control;

package body Control-.Panel-Manager is

package ESC renames Elevator-.Screen-Control;
use Standard-.EngineeringTypes;

------------- > EXPORTED OPERATIONS <------------------------------

C-16

function New-Control-Panel (Elevator-1D : SET.ElevatorID-ype)
return Control-Panel-Type is

Local-Control-Panel Control-Panel-Type;

begin

Local..Control-.Panel new Control-Panel-Representation;

Local-Control-Panel .Elevator-ID :=Elevator-ID;

return Lot al-.Control-Panel;

end New-Control-Panel;

procedure Apply-Light-Out-To
(This-Control-Panel : in Control.Panel-Type;

Floor : in SET.Floor-Type) is

begin

--Call the elevator simulation screen telling

--it to turn-off a button light:

ESC.Change.Elevator.Panel-Light-To (
Off,

This-.Control-Panel .Elevator-.ID,

Floor);

end Apply-Light-.Out..To;

--subprogram added for simulation implementation:

procedure Destination..Selected(Elevator-ID :SET.Elevator-ID-Type;

Floor :SET.Floor-Type) is

begin

Destination.Requested(Elevator-ID,Floor);

ESC.Change-.Elevator-.Panel-Light-.To(On, Elevator-.ID, Floor);

end Destination-Selected;

end Control-Panel-Manager;

C-17

C.6 Flo or-S ensor-Manager.

with Floor-Approaching;
package body Floor-Sensor-Manager is

--------------- > EXPORTED OPERATIONS <------------------------------

task body Floor-Sensor-Representation is

--Floor Sensor was retained as a task in the

--simulation to prevent the motor task from having

--to wait for the Scheduler to board passengers;

--this task waits instead:

Elevator :SET.Elevator-ID-Type;

Floor-.Number :SET.Floor-Type;

begin

accept Initialize (Elevator-ID : in SET.Elevator-ID-ype) do

Elevator := Elevator-ID;

end Initialize;

loop
accept Floor-Sensor-Interrupt(Floor : in SET.Floor-jype) do

Floor-Number := Floor;

end Floor-.SensorInterrupt;

Floor-Approaching(Elevator,Floor-Nunber);

end loop;

end Floor-Sensor.Representation;

function New-Floor-Sensor (Elevator-ID : SET.Elevator-IDType)

return Floor-Sensor-Type is

Floor-Sensor : Floor-Sensor-Type;

begin

C-18

Floor-Sensor :=new Floor-.Sensor-.Representation;

Floor-Sensor.Initialize(Elevator-ID);

return Floor-Sensor;

end New-Floor-.Sensor;

--procedure added for the simultin implementation:

procedure Flo~r-.Approacing(Floor-Sensur : in Floor-.Sensor..Type;
Floor : in SET.Floor-Type) is

begin

Floor-Sensor.Floor-Sensor-Interrupt(Floor);

end Floor-Approacing;

end Floor-Sensor-Manager;

C. 7 Motor-Alanager.

with Floor-Sensor-Manager, Elevator..$ystem-Aggregate;

package body Motor-Mlanager is

use Standard-Engineering-Types;

package ESA renames Elevator-System-.Aggregate;

task body Motor-Representation is

--This task simulates the action of the motor and

--the movement of the elevator. It notifies the

--Floor Sensor when a floor is approaching:

Elevator :SET.Elevator-D-.Type;

Current-Floor :SET.Floor-Type := SET.Floor-lType'first;

Floor-Delay duration := 2.0;
Current-Direction SET.Direction-Type := SET.parked;

begin

accept Initialize CElevator-ID :in SET.Elevator..ID-Type) do

Elevator :=Elevator-ID;

end Initialize;

C_-19

loop

select --stopped, waiting for motion command:

accept MotorCommandUp;

if Current-Floor /= SET.FloorType'last then
Current-Floor : Current-Floor + 1;

end if;
Current-Direction := SET.Up;

FloorSensorManager.FloorApproacing(

ESA.Elevators(Elevator).TheFloorSensor,

Current-Floor);

or
accept Motor_CLmandDown;

if Current-Floor /= SET.FloorType'first then

Current-Floor : Current_Floor - 1;
end if;

Current-Direction := SET.Down;

FloorSensorManager.FloorApproacing(
ESA.Elevators(Elevator).The_FloorSensor,

Current-Floor);

or --to avoid lock up if this one is called when already stopped:
accept MotorCommandStop;

end select;

--motion loop:

if Current-Direction /= SET.Parked then
loop

select

accept MotorCommandStop;

CurrentDirection := SET.Parked;

exit;

--These next two accepts are included here to avoid

--lockup if move commands are received when the elevator

--is already moving:

or
accept MotorCommandUp;

or

C-20

accept MotorCommandDown;

or

delay Floor-Delay;

--Increment floor and keep moving,

--reverse directions if at top moving
--up or bottom moving down:

if Current-Direction = SET.Up then

if Current-Floor / SET.FloorType'last then

Current-Floor : Current_Floor + 1;

else

Current-Floor : Current-Floor - 1;
Current-Direction := SET.Down;

end if;

else

if Current-Floor / SET.FloorType'first then
Current-Floor : Current-Floor - 1;

else

Current-Floor : Current-Floor + 1;

Current-Direction := SET.Up;

end if;

end if;

FloorSensorManager.FloorApproacing(

ESA.Elevators(Elevator).TheFloorSensor,

Current-Floor);

end select;

end loop;

end if;

end loop;

end Motor-Representation;

function NewMotor(ElevatorID : in SET.ElevatorIDType)

return Motor-Type is

Motor : Motor-Type;

begin

Motor : new Motor-Representation;

Motor. Initialize(ElevatorID);

return Motor;

C-21

end NewjMotor;

procedure Apply-GoTo(This..Yotor in Motor-Type;

Direction in SET.Direction-Type) is

begin

if Direction = Down then

This-Motor.Motor-Command-Down;

else

This-Motor. Motor-Comnand-ip;

end if;

end Apply.Go-.To;

procedure Apply-Stop-To(This-Motor :in Motor-Type) is

begin

This-.Motor.Motor-Comniand-Stop;
end Apply.Stop-To;

end MotorManager;

C-22

Bibliography

AFIT, 1990. Air Force Institute of Technology (AFIT). Object Oriented Require-
ments Determination, AFIT/ENG Working Paper, sic. Technical Report, Air
Force Institute of Technology (AFIT), 1990.

Batory and others, 1988. Batory, D S, et al. Construction of File Management Sys-
tems from Software Components. Technical Report, University of Texas, Austin,
TX, 1988. Technical Report TR-88-36.

Berard, 1990b. Berard, Edward. "Object Oriented Design." Unpublished Paper
Sent Directly from Mr Berard via Electronic Mail, July 1990.

Berard, 1990a. Berard, Edward. "Object Oriented Domain Analysis." Posted
in the comp.object newgroup of a public bulletin board, Message-ID:
637©ajpo.sei.cmu.edu, January 1990.

Biggerstaff and Richter, 1987. Biggerstaff, Ted and Charles Richter. "Reusability
Framework, Assessment, and Directions," IEEE Software, 4(2):41-49 (March
1987).

Booch, 1983. Booch, Grady. Software Engineering with Ada. The Ben-
jamin/Cummings Publishing Company, Inc., 1983.

Booch, 1987. Booch, Grady. Software Components with Ada. The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

Booch, 1991. Booch, Grady. Object Oriented Design with Applications. The Ben-
jamin/Cummings Publishing Company, Inc., 1991 (sic).

Brown and Quanrud, 1988. Brown, G R and It 13 Quanrud. 'The Generic Archi-
tecture Approach To Reusable Software." In Proceedings of the Sixth National

Conference On Ada Technology, Arlington, VA, Mar 14-17, pages 390-394,
1988.

CCSO, 1988. Command & Control Systems Office (CCSO). Reuse of Ada Software
Modules. Technical Report, CCSO, Standard Systems Center, AFCC, USAF,
1988.

D'Ippolito, 1989. D'Ippolito, Richard S. "Using Models in Software Engineering."
In Proceedings of Tri-Ada-89, Pittsburgh, PA, pages 256-264, October 1989.

DoD-STD 2167A, 1985. DoD-STD 2167A. Military Standard, Defense System Soft-
ware Development, February 1985.

EVB, 1989. EVB Software Engineering Inc. Object Oriented Requirements Analysis.
Frederick, MD, 1989. Slides From an OORA Course.

Goyden, 1989. Goyden, Maj Mike. "The Software Lifecycle with Ada: A Command
and Control Application." In Proceedings of Tri-Ada-89, Pittsburgh, PA, pages

40-55, October 1989.

BIB-1

Kaiser and Garlan, 1987. Kaiser, Gail E and David Garlan. "Melding Software Sys-
tems from Reusable Building Blocks," IEEE Software, 4(4):17-24 (July 1987).

Kiem, 1989. Kiem, Eric. "The KEYSTONE System Design Methodology," ACM
Ada Letters, 9(5):101-108 (July/August 1989).

Ladden, 1989. Ladden, Richard M. "A Survey of Issues to be Considered in the
Development of an Object-Oriented Development Methodology for Ada," ACM
Ada Letters, 9(2):78-89 (March/April 1989).

Rissman and others, 1988. Lee, K J, et al. An OOD Paradigm for Flight Simulators,
2nd Edition, CMU/SEI-88-TR-30. Technical Report, Software Engineering
Institute, 1988.

Rissman and others, 1989a. Lee, Kenneth J and Michael S Rissman. An Object-
Oriented Solution Example: A Flight Simulator Electrical System CM/SEI-
89-TR-5. Technical Report, Software Engineering Institute, 1989.

March, 1989. March, Steven G. An Object Oriented Analysis Method For Ada and
Embedded Systems. MS thesis, AFIT/GCS/ENC/89D-1, Air Force Institute of
Technology, 1989 (ADA202579).

Meyer, 1987. Meyer, Bertrand. "Reusability: The Case for Object-Oriented De-
sign," IEEE Software, 4 (2):50-64 (March 1987).

Parnas, 1976. Parnas, David L. "On the Design and Development of Program Fam-
ilies," IEEE Transactions on Software Engineering, SE-2(1):1-9 (March 1976).

Plinta and Lee, 1989. Plinta, Charles and Kenneth Lee. "A Model Solution for CaI
Domain." In Proceedings of Tri-Ada-89, Pittsburgh, PA, pages 56-67, October
1989.

Rissman and others, 1989b. Plinta, Charles, et al. A Model Solution for C3 I Ms-
sage Translation and Validation, CMU/SEI-89-TR-12. Technical Report, Soft-
ware Engineering Institute, 1989.

Pressman, 1987. Pressman, Roger S. Software Engineering: A Practitioner's Ap-
proach (2nd Edition). McGraw-Hill, Inc., 1987.

Prieto-Diaz, 1987. Prieto-Diaz, Rub6n. "Domain Analysis For Reusability." In Pro-
ccedings of COMPSAC'87, pages 23-29, 1987.

Rajlich, 1984. Rajlich, R. "SNAP - A Language and Environment for Programming-
in-the Large." In Proceedings of the IEEE Workshop on Languages for Autorna-
tion, pages 192-195, 1984.

Rajlich, 1985. Rajlich, R. "Paradigms for Design and Implementation In Ada,"
Communications of the ACM, 28(7):718-727 (July 1985).

Rissman and others, 1989c. Rissman, M., et al. Personnel meetings with members
of the Software Architectures Engineering Project team of the Software Engi-
neering Institute during 1989 and 1990.

BIB-2

Ruegsegger, 1988. Ruegsegger, Ted. "Making Reuse Pay: The SIDPERS-3 RAPID
Center," IEEE Communications, 26(8):16--4 (August 1988).

Seidewitz, 1989. Seidewitz, E. "General Object-Oriented Software Development:
Background and Experience," The Journal of Systems and Software, 9:95-108
(1989).

Smith, 1990. Smith, Connie U. Performance Engineering of Software Systems. The
Addison-Wesley Publishing Company, 1990.

SofTech, 1985. SofTech Inc. Ada Reusability Guidelines. Technical Report, SofTech,
Inc, 1985.

Sommerville, 1989. Sommerville, Ian. Software Engineering (3rd Edition). Addison-
Wesley Publishing Company, 1989.

St. Dennis, 1987. St. Dennis, Richard J. "Reusable Ada Software Guidelines." In
Proceedings of the Twentieth Annual Hawaii International Conference on Sys-
tems Sciences, pages 513-520, 1987.

Tracz, 1986. Tracz, William J. "Why Reusable Software Isn't." In Proceedings of the
Workshop on Future Directions in Computer Architecture and Software, pages
171-177, 1986.

Umphress, 1990. Umphress, David A. "OOA vs OOD." Posted in the comp.object
newgroup of a public bulletin board, Message-iD: 1675@blackbird.afit.af.mil,
1990.

BIB-3

Vita

Captain Kelly L. Spicer was born on 19 June 1955 in Alexandria, Virginia. He

graduated from Palo Verde High School in Tucson, Arizona, in 1973. He graduated

with a Bachelor of Science degree in Renewable Natural Resources from the Univer-

sity of Arizona in 1982. He graduated from the Air Force Officer Training School

in 1984. He graduated from Central State University in Oklahoma with a second

Bachelor of Science degree (computer science) in 1988.

Captain Spicer was assigned to the Command and Control Systems Office

(CCSO) (Air Force Communications Command) at Tinker AFB, OK, in 1985. While

there, he served as part of an Ada software development team who developed the

software for the Standard Automated Remote to AUTODIN Host (SARAH) mes-

sage preparation and communication system. Captain Spicer entered the Air Force

Institute of Technology, School of Engineering, in May of 1989.

Permanent address: 8100 Calle Potrero
Tucson, Arizona 8.5715

VITA-1

1 Form 4Acproved
REPORT DOCUMENTATION PAGE O MB Nso 0704-08

P..DC *eoCrrmq zurie~r, crr hscilection oft rformation s, - s r,ara to i~erage u'~ -- OO~C nc drqte:,eta revi- ^I~'' ntrrutofls. lel'l" q it.st'rq oa!
jathi'er~ and0 -3 t3-n9 hPe data nreaee. nrd con'oteting and revewrig the coI ect n a -"T rnavon Senrd c:omenets rearairg *.,, aOirdefl est."3!e anv)r ttr asoe 7
collection of ,ntrratOn. nciuaong suggesto 0nS tor reducing Th's 040Cr' to Jvaswngtor "1ead Qarefs Ser~ces. :,rec-.orate for .nforat-on oe'flic's ina Reor'ts. Q .eri,
Da~s H~h-v S~ite 12C4. Arlmgton. JA 222024A302. and to th'e Otice of Manaqe,, emT and S..oge! PaperworK Reductort Project (07C4-0198). JVasrrr.tC', DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

IDecember 1990 j Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN ARCHITECTURE THAT
SUPPORTS DESIGN AND COMPONENT REUSE

6. AUTHOR(S)

Kelly L. Spicer, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH
45433-6583 AFIT/GCS/ENG/90D-13

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution
unlimited

13. ABSTRACT (Maximumin 200 words)

Design reuse has more potential for increasing the productivity
of software development and maintenance than do traditional
approaches to software reuse. Current software development
methods do not promote design reuse. Reusable designs should
apply within some application domain, have a consistent
structure, provide a method for instantiating the design, avoid
object nesting, and promote reuse of smaller components. A design
mapping method from an object-oriented requirements analysis to a
design adhering to the foregoing principles is presented. The
method involves two transformation steps and introduces four
representation tools for conducting the transformations. The
second step produces Ada specifications. Design templates are
used. The method is applied to two problems and one is
implemented.

14. SUBJECT TERMS 15. NUMBER OF P/..3ES

Software Design Reuse, Software Reuse, Software 211
Engineering, Ada Programming Language, Object-Oriente6RCCD

17. SECURITY CLASSIFICATION is. SECURITY CLASSIFICATION- 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC7
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified I Unclassified Unclassified UL
NSN 7540-01.280-5500 SYardard 298 Rev : 9~ti Z39-'8

